
Open Babel Documentation
Release 2.3.1

Geoffrey R Hutchison Chris Morley Craig James
Chris Swain Hans De Winter Tim Vandermeersch

Noel M O’Boyle (Ed.)

December 05, 2011

Contents

1 Introduction 3
1.1 Goals of the Open Babel project . 3
1.2 Frequently Asked Questions . 4
1.3 Thanks . 7

2 Install Open Babel 9
2.1 Install a binary package . 9
2.2 Compiling Open Babel . 9

3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17
3.1 Synopsis . 17
3.2 Options . 17
3.3 Examples . 19
3.4 Differences between babel and obabel . 21
3.5 Format Options . 22
3.6 Append property values to the title . 22
3.7 Filtering molecules from a multimolecule file . 22
3.8 Substructure and similarity searching . 25
3.9 Sorting molecules . 25
3.10 Remove duplicate molecules . 25
3.11 Aliases for chemical groups . 26

4 The Open Babel GUI 29
4.1 Basic operation . 29
4.2 Options . 29
4.3 Multiple input files . 30
4.4 Wildcards in filenames . 30
4.5 Local input . 30
4.6 Output file . 30
4.7 Graphical display . 30
4.8 Using a restricted set of formats . 31
4.9 Other features . 31
4.10 Example files . 31

5 Molecular fingerprints and similarity searching 33
5.1 Fingerprint format . 33
5.2 Spectrophores™ . 37

6 obabel vs Chemistry Toolkit Rosetta 43
6.1 Heavy atom counts from an SD file . 43

i

6.2 Convert a SMILES string to canonical SMILES . 43
6.3 Report how many SD file records are within a certain molecular weight range 44
6.4 Convert SMILES file to SD file . 44
6.5 Report the similarity between two structures . 44
6.6 Find the 10 nearest neighbors in a data set . 44
6.7 Depict a compound as an image . 45
6.8 Highlight a substructure in the depiction . 45
6.9 Align the depiction using a fixed substructure . 46
6.10 Perform a substructure search on an SDF file and report the number of false positives 46
6.11 Calculate TPSA . 47
6.12 Working with SD tag data . 47
6.13 Unattempted tasks . 48

7 Write software using the Open Babel library 49
7.1 The Open Babel API . 49
7.2 C++ . 50
7.3 Python . 52
7.4 Java . 69
7.5 Perl . 72
7.6 CSharp and OBDotNet . 75
7.7 Ruby . 77

8 Cheminformatics 101 79
8.1 Cheminformatics Basics . 79
8.2 Representing Molecules . 81
8.3 Substructure Searching with Indexes . 85
8.4 Molecular Similarity . 86
8.5 Chemical Registration Systems . 87

9 Radicals and SMILES extensions 89
9.1 The need for radicals and implicit hydrogen to coexist . 89
9.2 How Open Babel does it . 89
9.3 In radicals either the hydrogen or the spin multiplicity can be implicit 90
9.4 SMILES extensions for radicals . 90

10 Contributing to Open Babel 93
10.1 Overview . 93
10.2 Developing Open Babel . 94
10.3 Documentation . 99
10.4 Testing the Code . 100
10.5 Software Archaeology . 101

11 Adding plugins 103
11.1 How to add a new file format . 103
11.2 Adding new operations and options . 104

12 Supported File Formats and Options 107
12.1 Common cheminformatics formats . 107
12.2 Utility formats . 113
12.3 Other cheminformatics formats . 122
12.4 Computational chemistry formats . 123
12.5 Crystallography formats . 130
12.6 Reaction formats . 132
12.7 Image formats . 133
12.8 2D drawing formats . 138

ii

12.9 3D viewer formats . 138
12.10 Kinetics and Thermodynamics formats . 139
12.11 Molecular dynamics and docking formats . 140
12.12 Volume data formats . 142
12.13 Miscellaneous formats . 143
12.14 Biological data formats . 143
12.15 Obscure formats . 143

Bibliography 145

iii

iv

Open Babel Documentation, Release 2.3.1

The latest version of this documentation is available in several formats from http://openbabel.org/docs/dev/.

Contents 1

http://openbabel.org/docs/dev/

Open Babel Documentation, Release 2.3.1

2 Contents

Chapter 1
Introduction

Open Babel is a chemical toolbox designed to speak the many languages of chemical data. It’s an open, collaborative
project allowing anyone to search, convert, analyze, or store data from molecular modeling, chemistry, solid-state
materials, biochemistry, or related areas.

1.1 Goals of the Open Babel project

Open Babel is a project to facilitate the interconversion of chemical data from one format to another – including file
formats of various types. This is important for the following reasons:

• Multiple programs are often required in realistic workflows. These may include databases, modeling or compu-
tational programs, visualization programs, etc.

• Many programs have individual data formats, and/or support only a small subset of other file types.

• Chemical representations often vary considerably:

– Some programs are 2D. Some are 3D. Some use fractional k-space coordinates.

– Some programs use bonds and atoms of discrete types. Others use only atoms and electrons.

– Some programs use symmetric representations. Others do not.

– Some programs specify all atoms. Others use “residues” or omit hydrogen atoms.

• Individual implementations of even standardized file formats are often buggy, incomplete or do not completely
match published standards.

As a free, and open source project, Open Babel improves by way of helping others. It gains by way of its users,
contributors, developers, related projects, and the general chemical community. We must continually strive to support
these constituencies.

We gratefully accept contributions in many forms – from bug reports, complaints, and critiques, which help us improve
what we do poorly, to feature suggestions, code contributions, and other efforts, which direct our future development.

• For end users, we seek to provide a range of utility, from simple (or complex) file interconversion, to indexing,
databasing, and transforming chemical and molecular data.

• For developers, we seek to provide an easy-to-use free and open source chemical library. This assists a variety of
chemical software, from molecular viewers and visualization tools and editors to databases, property prediction
tools, and in-house development.

To this end, we hope that our tools reflect several key points:

• As much chemical information and files should be read and understood by Open Babel. This means that we
should always strive to support as many concepts as possible in a given file format, and support for additional
file formats is beneficial to the community as a whole.

• Releases should be made to be “as good as we can make it” each and every time.

3

Open Babel Documentation, Release 2.3.1

• Improving our code and our community to bring in additional contributions in many forms helps both developers
and end-users alike. Making development easy for new contributors will result in better tools for users as well.

1.2 Frequently Asked Questions

1.2.1 General

What is Open Babel?

Put simply, Open Babel is a free, open-source version of the Babel chemistry file translation program. Open Babel is
a project designed to pick up where Babel left off, as a cross-platform program and library designed to interconvert
between many file formats used in molecular modeling, computational chemistry, and many related areas.

Open Babel includes two components, a command-line utility and a C++ library. The command-line utility is intended
to be used as a replacement for the original babel program, to translate between various chemical file formats. The
C++ library includes all of the file-translation code as well as a wide variety of utilities to foster development of other
open source scientific software.

How does this relate to BabelChat, BabelFish, Babel IM, etc. ...?

It doesn’t. Not surprisingly, “babel” is used frequently in a lot of software names.

Is it Open Babel or OpenBabel?

Your choice. It’s probably easier to call it Open Babel since that’s what it is–an open version of Babel. But if you like
one-word, mixed-case project names, then go for OpenBabel. In that case, the space is just too small to be printed.

How does this relate to the original Babel and OELib, the “next” Babel?

The original Babel was written by Pat Walters and Matt Stahl, based on the “convert” program by Ajay Shah, and
is still a remarkable application. Both Pat and Matt have moved on to other work. The original Babel is hosted
by Smog.com on a Babel homepage, by the Computational Chemistry List (CCL) and of course by Open Babel at
SourceForge.net.

Along the way, the two original authors started a rewrite of Babel into C++ they called OBabel, which was never
really publicly released. But Matt used some of these ideas in OELib, which was generously released under the GNU
GPL by his employer, OpenEye Software, and the last known version of this OELib is still available from our file
repository. OpenEye decided that for their purposes OELib needed a rewrite (now called OEChem), but this would
be closed-source to include some advanced algorithms. So the GPL’ed version of OELib would not be maintained.
Instead, the free version of OELib was renamed and has become “Open Babel” with the blessing of Matt and other
contributors.

Open Babel has evolved quite a lot since its birth in 2001.

What’s the latest version?

As of this writing, the latest version is Open Babel 2.3.1. This is a stable version suitable for widespread use and
development.

4 Chapter 1. Introduction

http://smog.com/chem/babel/
http://ccl.net/cca/software/UNIX/babel/
http://sourceforge.net/project/showfiles.php?group_id=40728&package_id=100796
http://sourceforge.net/project/showfiles.php?group_id=40728&package_id=100796
http://sourceforge.net/project/showfiles.php?group_id=40728&package_id=100796
http://www.eyesopen.com/products/toolkits/oechem.html

Open Babel Documentation, Release 2.3.1

Can I use Open Babel code in a personal project?

One common misconception about the GNU GPL license for Open Babel is that it requires users to release any code
that uses the Open Babel library. This is completely untrue. There are no restrictions on use of Open Babel code for
personal projects, regardless of where you work (academia, industry, ... wherever).

However, if you intend on releasing a software package that uses Open Babel code, the GPL requires that your package
be released under the GNU GPL license. The distinction is between use and distribution. See What’s in it for me to
contribute? below for more on the licensing issues.

How do I cite Open Babel in a paper?

To support development of Open Babel, please cite:

• Hutchison et al. [obj2011]

• Open Babel, version 2.3.1, http://openbabel.org (accessed Oct 2011)

The first is a paper describing Open Babel; and the second is one way to cite a software package at a particular URL.
Obviously, you should include the version number of Open Babel you used, and the date you downloaded the software
or installed Open Babel.

1.2.2 Features, Formats, Roadmap

Why don’t you support file format X?

The file formats currently supported are some of the more common file formats and, admittedly, those we use in our
work. If you’d like to see other file formats added, we need one of:

• documentation on the file format

• working code to read the file format or translate it

• example files in the new file format and in some other format

The latter obviously is the easiest with text file formats. Binary files take some time to reverse engineer without
documentation or working code. Also consider pointing developers to this FAQ and the “What’s in it for me?” section.

When I convert from SMILES to MOL2/PDB/etc., why are all of the coordinates zero?

The SMILES format contains 2D information on the molecule. That is, it says which atoms are connected to which
other atoms, and what type of bonds are present. MOL2, PDB and several other formats contain 3D coordinate
information not present in the SMILES format. Since Open Babel does not attempt to generate 3D structure by
default, all of the coordinates are set to zero. However, it is possible to generate 3D structure with the release of Open
Babel 2.2.0 using the --gen3d option.

What sorts of features will be added in the future?

It’s an open project, so if features are suggested or donated, they’ll be considered as much as anything else on the
drawing board. Some things are pretty clear from the roadmap.

1.2. Frequently Asked Questions 5

http://openbabel.org

Open Babel Documentation, Release 2.3.1

1.2.3 What’s in it for me to contribute?

What’s in it for my chemistry software company?

If your product is closed-source or otherwise incompatible with the GPL, you unfortunately cannot link directly to the
code library. You can, however, distribute Open Babel in unmodified form with your products to use the command-line
interface. This is fairly easy because the Open Babel babel program allow reading from the standard input and writing
to the standard output (functioning as a POSIX pipe).

If you decide to distribute binaries, you should either offer users the source if they want, or point them to the Open
Babel website. Note that if you modify the source, you obviously can’t point back to the Open Babel website – the
GPL requires that you distribute the changed source. (Or you can convince us to incorporate the changes and point
back to us.)

What’s not to like with this deal? You can have Open Babel translate foreign file formats for you and can point users
at the website for distribution. You don’t need to write tons of code for all these formats and bug reports can be passed
back to us.

Of course, there’s one catch. You’ll most likely need to add feature-rich support for your file formats. So if you
contribute a small amount of code under the GPL to read/write your files, everything else is handled by Open Babel.

It’s a win-win for everyone. The community benefits by having feature-rich translation code and open file formats.
Your company and its programs benefit by the ability to read just about every format imaginable. Users benefit by
using the programs they need for the tasks they need.

What’s in it for me as an academic?

If you’re an academic developer, you certainly should read the previous answer too. It takes little work on your part to
interface with Open Babel and you get a lot in return.

But even if you’re just an academic user, there’s a lot of reasons to contribute. Most of us deal with a variety of file
formats in our work. So it’s useful to translate these cleanly. If a format isn’t currently supported by Open Babel, see
above. If you find bugs please report them. Since it’s open source, you can patch the code yourself, recompile and
have the problem fixed very quickly.

If you’re inclined to write code, the GPL is an excellent option for the academic. You’re the original copyright holder,
so you can do whatever you want with the code, in addition to selling it. But if you’ve also licensed it under the GPL,
no one can distribute it as proprietary (i.e., closed-source) software without your agreement. Fellow academics can
use it directly, learn from it, improve it and contribute back to you. Isn’t that why many of us went into science?

Once licensed under the GPL, the code must remain free to interested parties. If someone modifies it, that code must
still remain under the GPL, free for all.

What’s in it for an open-source software project?

Certainly the answers for closed-source software and academics also apply for you. Beyond that, if your code is
compatible with the GPL, you can directly use Open Babel and all of the API. This is already happening with the
Avogadro molecular editor, available under the GPL, and many others (see related projects). There’s a lot of code in
Open Babel beyond file translation and more to come. Why reinvent the wheel?

Why is this covered under the GPL instead of license X?

The short answer is that OpenEye Scientific Software employs Matt Stahl, one of the authors of the original Babel.
They released a library called OELib under the GPL that did many things that Babel did. Later they decided to release

6 Chapter 1. Introduction

http://openbabel.org/wiki/Related
http://www.eyesopen.com

Open Babel Documentation, Release 2.3.1

the next version of OELib as a closed-source project–their choice for their code. We took the version of OELib still
under GPL and went from there.

If you’d like to see Open Babel licensed differently, we’d suggest asking OpenEye if they’d consider releasing the old
code under a new license, e.g. the LGPL. At that point, we’d consider whether Open Babel should be relicensed or
not. Obviously all copyright holders must agree to the new license.

It’s worth noting that since OpenEye is developing a closed-source library called OEChem and implies one reason for
purchase is in closed-source development products. So we think it’s highly unlikely that OpenEye would allow Open
Babel to become a competitor by relicensing under the LGPL.

Where can I read more about the GNU GPL?

The Free Software Foundation maintains a FAQ list about the GNU GPL. The FAQ attempts to address common
questions in an easy-to-read (i.e., not in legal language) form.

1.3 Thanks

Open Babel would not be what it is without the help of a cast of many. We are fundamentally a community project
and aim to offer open development, responsive to users and contributors alike.

In addition to contributors of all sorts, a variety of related projects keep us on our toes. We would also like to thank
everyone who has cited Open Babel in academic and technical literature, posters, and presentations.

Credits (in alphabetical order)

• Rich Apodaca
• Joshua Ballanco
• Michael Banck
• Ross Braithwaite
• Daniil Bratashov
• Francesco Bresciani
• Jean Brefort
• Alex Clark
• Joe Corkery
• Steve Constable
• Donald Curtis
• Andrew Dalke
• Daen de Leon
• Menno Deij
• Christian Ehrlicher
• Nick England
• Vincent Favre-Nicolin
• Maxim Fedorovsky
• Fabien Fontaine
• Malcolm Gillies
• Richard Gillilan
• Brian Goldman
• Rajarshi Guha
• Richard Hall
• Bob Hanson
• Marcus Hanwell

1.3. Thanks 7

http://www.eyesopen.com/products/toolkits/oechem.html
http://www.fsf.org/licenses/gpl-faq.html

Open Babel Documentation, Release 2.3.1

• Tommi Hassinen
• Bryan Herger
• David Hoekman
• Geoffrey Hutchison
• Benoît Jacob
• Craig James
• Mikael Johansson
• Stefan Kebekus
• Elmar Krieger
• Erik Kruus
• Daniel Leidert
• Christian Laggner
• Greg Landrum
• Eugene Leitl
• Teng Lin
• Zhiguo Liu
• Daniel Mansfield
• David Mathog
• Gerde Menche
• Dominik Mierzejewski
• Chris Morley
• Paul Mortenson
• Peter Murray-Rust
• Carsten Niehaus
• Anthony Nicholls
• Noel O’Boyle
• Sergei Patchkovskii
• Frank Peters
• Steffen Reith
• Louis Richard
• Roger Sayle
• Ernst-Georg Schmid
• Ajay Shah
• Kevin Shepherd
• Sangwoo Shim
• Andrew Smellie
• Matt Sprague
• Matt Stahl
• Chris Swain
• S Joshua Swamidass
• Bob Tolbert
• Sergey Trepalin
• Tim Vandermeersch
• Ugo Varetto
• Martin Vogt
• Izhar Wallach
• Fredrik Wallner
• Pat Walters
• Pawel Wolinski
• Joerg Kurt Wegner

There are probably many more who have contributed to Babel, OBabel, OELib or directly to Open Babel who are not
listed here. Please help us keep this list updated. THANKS!

8 Chapter 1. Introduction

Chapter 2
Install Open Babel

Open Babel runs on Windows, Linux and MacOSX. You can either install a binary package (the easiest option) or
compile Open Babel yourself (also easy, but much more geek cred).

2.1 Install a binary package

2.1.1 Windows

Open Babel is available as a binary installer for Windows. It includes several command-line tools as well as a graphical
user interface (GUI).

Advanced users may be interested in compiling Open Babel themselves (see Compiling Open Babel).

2.1.2 Linux

Open Babel binary packages are available from many Linux distributions including Ubuntu, OpenSUSE and Fedora.

In general, we recommend using the latest release of Open Babel (currently 2.3.1). If this is not available for your
Linux distribution, you should compile Open Babel yourself .

2.2 Compiling Open Babel

Open Babel is written in C++. Compiling is the process of turning this C++ into instructions that the computer’s
processor can understand, machine code.

Although pre-compiled (or “binary”) packages are available for several platforms, there are several reasons you might
want to compile Open Babel yourself:

• The current release (2.3.1) of Open Babel is not available for your platform. We recommend always using the
latest release.

• You want more control over the features available. For example, perhaps you want the Python bindings but these
were not included in your distribution.

• You want to use the latest development code.

• You want to add a new feature. It is easy to add new formats or operations to Open Babel as it has a plugin
architecture (see Adding plugins).

• You just want to compile stuff yourself. We understand.

Open Babel can be compiled on Linux, MacOSX, BSDs and other Unixes, and also on Windows (with Cygwin,
MinGW or MSVC).

9

http://sourceforge.net/projects/openbabel/files/openbabel/2.3.1/OpenBabel2.3.1_Windows_Installer.exe/download

Open Babel Documentation, Release 2.3.1

2.2.1 Requirements

To build Open Babel, you need the following:

• The source code for the latest release of Open Babel

• A C++ compiler

Open Babel is written in standards-compliant C++. The best-supported compilers are GCC 4 and
MSVC++ 2008, but it also compiles with Clang and Intel Compiler 11.

• CMake 2.4 or newer

Open Babel uses CMake as its build system. CMake is an open source cross-platform build system
from KitWare.

You need to install CMake 2.4 or newer. This is available as a binary package from the KitWare
website; alternatively, it may be available through your package manager (on Linux). If necessary,
you can also compile it yourself from the source code.

If you want to build the GUI (Graphical User Interface), you need the following in addition:

• wxWidgets 2.8 (or newer)

Binary packages may be available through your package manager (wx-common, wx2.8-headers and
libwxbase2.8-dev on Ubuntu) or from http://www.wxwidgets.org/downloads/. Otherwise, you could
try compiling it yourself from the source code.

The following are optional when compiling Open Babel, but if not available some features will be missing:

• libxml2 development headers are required to read/write CML files and other XML formats (the libxml2-dev
package in Ubuntu)

• zlib development libraries are required to support reading gzipped files (the zlib1g-dev package in Ubuntu)

• Eigen version 2 is required if using the language bindings in the release. In addition, if it not present, some
API classes (OBAlign, OBConformerSearch) and plugins (the QEq and QTPIE charge models, the conformer
operation) will not be available.

Eigen may be available through your package manager (the libeigen2-dev package in Ubuntu). Alternatively,
Eigen is available from http://eigen.tuxfamily.org. It doesn’t need to be compiled or installed. Just unzip it and
specify its location when configuring cmake (see below) using -DEIGEN2_INCLUDE_DIR=whereever.

• Cairo development libraries are required to support PNG depiction (the libcairo2-dev package in Ubuntu)

• If using GCC 3.x to compile (and not GCC 4.x), then the Boost headers are required for certain formats (CML,
Chemkin, Chemdraw CDX, MDL RXN and RSMI)

If you want to use Open Babel using one of the supported language bindings, then the following notes may apply:

• You need the the Python development libraries to compile the Python bindings (package python-dev in Ubuntu)

• You need the the Perl development libraries to compile the Perl bindings (package libperl-dev in Ubuntu)

2.2.2 Basic build procedure

The basic build procedure is the same for all platforms and will be described first. After this, we will look at variations
for particular platforms.

1. The recommended way to build Open Babel is to use a separate source and build directory; for example,
openbabel-2.3.1 and build. The first step is to create these directories:

10 Chapter 2. Install Open Babel

http://sourceforge.net/projects/openbabel/files/openbabel/2.3.1/openbabel-2.3.1.tar.gz/download
http://www.wxwidgets.org/downloads/
http://eigen.tuxfamily.org

Open Babel Documentation, Release 2.3.1

$ tar zxf openbabel-2.3.1.tar.gz # (this creates openbabel-2.3.1)
$ mkdir build

2. Now you need to run cmake to configure the build. The following will configure the build to use all of the
default options:

$ cd build
$ cmake ../openbabel-2.3.1

3. If you need to specify an option, use the -D switch to cmake. For example, the following line sets the value of
CMAKE_INSTALL_PREFIX and CMAKE_BUILD_TYPE:

$ cmake ../openbabel-2.3.1 -DCMAKE_INSTALL_PREFIX=~/Tools -DCMAKE_BUILD_TYPE=DEBUG

We will discuss various possible options later.

4. At this point, it would be a good idea to compile Open Babel:

$ make

Have a coffee while the magic happens. If you have a multi-processor machine and would prefer an expresso,
try a parallel build instead:

$ make -j4 # parallel build across 4 processors

5. And finally, as root (or using sudo) you should install it:

make install

2.2.3 Local build

Look Ma, no install!

With the right sort of environment variable magic (see below), you can actually use Open Babel straight from
the build folder. But life is a bit easier if you install it somewhere, either system-wide or locally.

By default, Open Babel is installed in /usr/local/ on a Unix-like system. This requires root access (or sudo).
Even if you do have root access, you may not want to overwrite an existing installation or you may want to avoid
conflicts with a version of Open Babel installed by your package manager.

The solution to all of these problems is to do a local install into a directory somewhere in your home folder. An
additional advantage of a local install is that if you ever want to uninstall it, all you need to do is delete the installation
directory; removing the files from a global install is more work.

1. To configure cmake to install into ~/Tools/openbabel-install, for example, you would do the follow-
ing:

$ cmake ../openbabel-2.3.1 -DCMAKE_INSTALL_PREFIX=~/Tools/openbabel-install

2. Then you can run make and make install without needing root access:

$ make && make install

2.2. Compiling Open Babel 11

Open Babel Documentation, Release 2.3.1

2.2.4 Compile the GUI

The GUI is built using the wxWidgets toolkit. Assuming that you have already installed this (see Requirements above),
you just need to configure cmake as follows:

$ cmake ../openbabel-2.3.1 -DBUILD_GUI=ON

When you run make and make install, the GUI will be automatically built and installed alongside the main Open
Babel library and tools.

2.2.5 Compile language bindings

Eigen2 required

If you wish to compile the language bindings supplied in the release, Eigen2 is required (see Requirements
above).

1. When configuring CMake, include options such as -DPYTHON_BINDINGS=ON -DRUBY_BINDINGS=ON
for whichever bindings you wish to build (valid names are PYTHON, CSHARP, PERL, JAVA or RUBY). The
bindings will then be built and installed along with the rest of Open Babel. You should note any warning
messages in the CMake output.

2. If CMake cannot find Java, you should set the value of the environment variable JAVA_HOME to the directory
containing the Java bin and lib directories. For example, if you download the JDK from Sun and run the
self-extracting .bin file, it creates a directory jdk1.6.0_21 (or similar); you should set JAVA_HOME to the
full path to this directory.

3. If CMake cannot find the Perl libraries (which happens on Ubuntu 9.10, surprisingly), you
need to configure CMake with something like -DPERL_LIBRARY=/usr/lib/libperl.so
-DPERL_INCLUDE_PATH=/usr/lib/perl/5.10.0/CORE.

4. If you are compiling the CSharp bindings, you should specify the CSharp compiler to use with something like
-DCSHARP_EXECUTABLE=C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe.

5. With Java and CSharp, the bindings will be installed by default to the same location as the Open Babel libraries.

6. For Ruby, Python and Perl, the library files are installed to a subdirectory of wherever the Open Babel li-
braries are installed: something like python2.6/site-packages/ or dist-packages in the case of Python,
perl/5.8.7 for Perl, and site_ruby/1.8/linux-i486 for Ruby. If you wish to install the bindings
somewhere else, configure CMake with the option -DPYTHON_PREFIX=wherever for Python, or something
similar for Perl (OBPERL_PREFIX) or Ruby (RUBY_PREFIX).

7. To tell Python where to find the bindings, add the directory containing openbabel.py to the front of the
PYTHONPATH environment variable (if it is not there already). Similarly add the perl subdirectory (where
the bindings were installed) to the front of the PERL5LIB variable; for Ruby add the directory containing
openbabel.so to RUBYLIB; for Java, add the location of openbabel.jar to the CLASSPATH.

For example, for Python:

$ cmake ../openbabel-2.3.1 -DPYTHON_BINDINGS=ON
$ make
make install
$ export PYTHONPATH=/usr/local/lib/python2.6/site-packages:$PYTHONPATH

12 Chapter 2. Install Open Babel

Open Babel Documentation, Release 2.3.1

2.2.6 Cygwin

The basic build instructions up above work just fine so long as you use the CMake provided by Cygwin rather than a
native Windows installation.

If you get an error about undefined reference to ’_xmlFreeTextReader’, you need to specify the
location of the XML libraries with the -DLIBXML2_LIBRARIES option:

$ cmake ../openbabel-2.3.1 -DLIBXML2_LIBRARIES=/usr/lib/libxml2.dll.a

The language bindings don’t seem to work under Cygwin. If you can get them to work, let us know. Also remember
that anything that uses Cygwin runs slower than a native build using MinGW or MSVC++, so if speed is an issue you
might prefer to compile with MinGW or MSVC++.

2.2.7 MinGW

Open Babel builds out of the box with MinGW. It’s an awkward system to set up though, so here are some step-by-step
instructions...TODO

2.2.8 Windows (MSVC)

The main Windows build used by Open Babel uses the Microsoft Visual C++ compiler (MSVC).

1. Set up the following environment variables:

(a) Add the CMake bin directory to the PATH.

(b) (Optional, see Requirements above) Set EIGEN2_INCLUDE_DIR to the location of the top level Eigen
directory (if installed).

(c) (Optional, required for GUI) Set WXWIN to the top level directory of wxWidgets (if installed).

2. Install the Microsoft Visual C++ 2008 (or newer) compiler.

We use the Visual C++ 2008 (9.0) Express Edition (available for free). If you use MSVC++ 2010, open
windows-vc2008/default_build.bat in a text editor and change the Visual Studio 9 2008
to Visual Studio 10.

3. Open a command prompt, and change directory to the windows-vc2008 subdirectory. To configure cmake,
and generate the VC++ project files, run default_build.bat.

4. Double-click on windows-vc2008/build/openbabel.sln to start MSVC++. At the top of the window
just below the menu bar, choose Release in the drop-down box.

5. On the left-hand side, right-click on the ALL_BUILD target, and choose Build.

2.2.9 Troubleshooting build problems

CMake caches some variables from run-to-run. How can I wipe the cache to start from scratch?

Delete CMakeCache.txt in the build directory. This is also a very useful file to look into if you have any problems.

2.2. Compiling Open Babel 13

http://www.microsoft.com/Express/VC/

Open Babel Documentation, Release 2.3.1

How do I specify the location of the XML libraries?

CMake should find these automatically if they are installed system-wide. If you need to specify them, try using
the -DLIBXML2_LIBRARIES=wherever option with CMake to specify the location of the DLL or SO file, and
-DLIBXML2_INCLUDE_DIR=wherever to specify the location of the header files.

How do I specify the location of the ZLIB libraries?

CMake should find these automatically if they are installed system-wide. If you need to specify them, try us-
ing the -DZLIB_LIBRARY=wherever option with CMake to specify the location of the DLL or SO file, and
-DZLIB_INCLUDE_DIR=wherever to specify the location of the header files.

What environment variables affect how Open Babel finds formats, plugins and libraries?

LD_LIBRARY_PATH - Used to find the location of the libopenbabel.so file. You should set this if you get
error messages about not being able to find libopenbabel.so.

BABEL_LIBDIR - Used to find plugins such as the file formats If obabel -L formats does not list any file
formats, then you need to set this environment variable to the directory where the file formats were installed,
typically /usr/local/lib/openbabel/.

BABEL_DATADIR - Used to find the location of the data files used for fingerprints, forcefields, etc. If you get
errors about not being able to find some .txt files, then you should set this to the name of the
folder containing files such as patterns.txt and MACCS.txt. These are typically installed to
/usr/local/share/openbabel.

2.2.10 Advanced build options

How do I control whether the tests are built?

The CMake option -DENABLE_TESTS=ON or OFF will look after this. To actually run the tests, use make tests.

How do I do a debug build?

-DCMAKE_BUILD_TYPE=Debug does a debug build (gcc -g). To revert to a regular build use
-DCMAKE_BUILD_TYPE=Release.

How do I see what commands cmake is using to build?

Run Make as follows:

$ VERBOSE=1 make

How do I build one specific target?

Just specify the target when running Make. The following just builds the Python bindings:

$ make _openbabel

14 Chapter 2. Install Open Babel

Open Babel Documentation, Release 2.3.1

To speed things up, you can ask Make to ignore dependencies:

$ make _openbabel/fast

How do I create the SWIG bindings?

Use the -DRUN_SWIG=ON option with CMake. This requires SWIG 2.0 or newer. If the SWIG executable is not on
the PATH, you will need to specify its location with -DSWIG_EXECUTABLE=wherever.

How do I build the Doxygen documentation?

Use the -DBUILD_DOCS=ON option with CMake. If the Doxygen executable is not on the PATH, you will need to
specify its location with -DDOXYGEN_EXECUTABLE=wherever.

2.2. Compiling Open Babel 15

Open Babel Documentation, Release 2.3.1

16 Chapter 2. Install Open Babel

Chapter 3
obabel and babel - Convert, Filter and
Manipulate Chemical Data

obabel and babel are cross-platform programs designed to interconvert between many file formats used in molecular
modeling and computational chemistry and related areas. They can also be used for filtering molecules and for simple
manipulation of chemical data.

3.1 Synopsis

• obabel [-H <help-options>]
• babel [-H <help-options>]
• obabel [-i <input-ID>] infile [-o <output-ID>] [-O outfile] [OPTIONS]
• babel [-i <input-ID>] infile [-o <output-ID>] [outfile] [OPTIONS]

obabel is recommended over babel (see Differences between babel and obabel).

3.2 Options

Information and help

• obabel [-H <help-options>]

• babel [-H <help-options>]

-H Output usage information

-H <format-ID> Output formatting information and options for the format specified

-Hall Output formatting information and options for all formats

-L List plugin types (charges, descriptors, fingerprints,
forcefields, formats, loaders and ops)

-L <plugin type> List plugins of this type. For example, obabel -L formats gives the list of
file formats.

-L <plugin-ID> Details of a particular plugin (of any plugin type). For example, obabel -L
cml gives details on the CML file format.

-V Output version number

17

Open Babel Documentation, Release 2.3.1

Conversion options

• obabel [-i <input-ID>] infile [-o <output-ID>] [-O outfile] [OPTIONS]

• obabel -:"<SMILES string>" [-o <output-ID>] [-O outfile] [OPTIONS]

• babel [-i <input-ID>] infile [-o <output-ID>] [outfile] [OPTIONS]

Note: If only input and output files are given, Open Babel will guess the file type from the filename extension. For
information on the file formats supported by Open Babel, please see Supported File Formats and Options.

-a <options> Format-specific input options. Use -H <format-ID> to see options allowed
by a particular format, or see the appropriate section in Supported File Formats
and Options.

--add <list> Add properties (for SDF, CML, etc.) from descriptors in list. Use -L
descriptors to see available descriptors.

--addinindex Append input index to title (that is, the index before any filtering)

--addoutindex Append output index to title (that is, the index after any filtering)

--addtotitle <text> Append the text after each molecule title

--append <list> Append properties or descriptor values appropriate for a molecule to its title. For
more information, see Append property values to the title.

-b Convert dative bonds (e.g. [N+]([O-])=O to N(=O)=O)

-c Center atomic coordinates at (0,0,0)

-C Combine molecules in first file with others having the same name

-d Delete hydrogens (make all hydrogen implicit)

--delete <list> Delete properties in list

-e Continue to convert molecules after errors

---errorlevel <N> Filter the level of errors and warnings displayed:

• 1 = critical errors only

• 2 = include warnings too (default)

• 3 = include informational messages too

• 4 = include “audit log” messages of changes to data

• 5 = include debugging messages too

-f <#> For multiple entry input, start import with molecule # as the first entry

--filter <criteria> Filter based on molecular properties. See Filtering molecules from a multi-
molecule file for examples and a list of criteria.

--gen2d Generate 2D coordinates

--gen3d Generate 3D coordinates

-h Add hydrogens (make all hydrogen explicit)

-i <format-ID> Specifies input format. See Supported File Formats and Options.

-j, --join Join all input molecules into a single output molecule entry

18 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Open Babel Documentation, Release 2.3.1

-k Translate computational chemistry modeling keywords. See the computational
chemistry formats (Computational chemistry formats), for example GAMESS In-
put (inp, gamin) and Gaussian 98/03 Input (gjf, gjc, gau, com).

-m Produce multiple output files, to allow:

• Splitting one input file - put each molecule into consecutively numbered
output files

• Batch conversion - convert each of multiple input files into a specified out-
put format

-l <#> For multiple entry input, stop import with molecule # as the last entry

-o <format-ID> Specifies output format. See Supported File Formats and Options.

-p <pH> Add hydrogens appropriate for pH (use transforms in phmodel.txt)

--partialcharge <charge-method> Calculate partial charges by the specified method. List available
methods using obabel -L charges.

--property <name value> Add or replace a property (for example, in an SD file)

-r Remove all but the largest contiguous fragment (strip salts)

--readconformers Combine adjacent conformers in multi-molecule input into a single molecule

-s <SMARTS> Convert only molecules matching the SMARTS pattern specified

-s <filename.xxx> Convert only molecules with the molecule in the file as a substructure

--separate Separate disconnected fragments into individual molecular records

--sort Output molecules ordered by the value of a descriptor. See Sorting molecules.

--title <title> Add or replace molecular title

--unique, --unique <param> Do not convert duplicate molecules. See Remove duplicate molecules.

--writeconformers Output multiple conformers as separate molecules

-x <options> Format-specific output options. use -H <format-ID> to see options allowed
by a particular format, or see the appropriate section in Supported File Formats
and Options.

-v <SMARTS> Convert only molecules NOT matching the SMARTS pattern specified

-z Compress the output with gzip (not on Windows)

3.3 Examples

The examples below assume the files are in the current directory. Otherwise you may need to include the full path to
the files e.g. /Users/username/Desktop/mymols.sdf and you may need to put quotes around the filenames
(especially in Windows when they can contain spaces).

Standard conversion:

obabel ethanol.xyz -O ethanol.pdb
babel ethanol.xyz ethanol.pdb

Conversion if the files do not have an extension that describes their format:

obabel -ixyz ethanol.aa -opdb -O ethanol.bb
babel -ixyz ethanol.aa -opdb ethanol.bb

3.3. Examples 19

Open Babel Documentation, Release 2.3.1

Molecules from multiple input files (which can have different formats) are normally combined in the output file:

obabel ethanol.xyz acetal.sdf benzene.cml -O allmols.smi

Conversion from a SMI file in STDIN to a Mol2 file written to STDOUT:

obabel -ismi -omol2

Split a multi-molecule file into new1.smi, new2.smi, etc.:

obabel infile.mol -O new.smi -m

In Windows this can also be written:

obabel infile.mol -O new*.smi

Multiple input files can be converted in batch format too. To convert all files ending in .xyz (*.xyz) to PDB files,
you can type:

obabel *.xyz -opdb -m

Open Babel will not generate coordinates unless asked, so while a conversion from SMILES to SDF will generate a
valid SDF file, the resulting file will not contain coordinates. To generate coordinates, use either the --gen3d or the
--gen2d option:

obabel infile.smi -O out.sdf --gen3d

If you want to remove all hydrogens (i.e. make them all implicit) when doing the conversion the command would be:

obabel mymols.sdf -osmi -O outputfile.smi -d

If you want to add hydrogens (i.e. make them all explicit) when doing the conversion the command would be:

obabel mymols.sdf -O outputfile.smi -h

If you want to add hydrogens appropriate for pH7.4 when doing the conversion the command would be:

obabel mymols.sdf -O outputfile.smi -p

The protonation is done on an atom-by-atom basis so molecules with multiple ionizable centers will have all centers
ionized.

Of course you don’t actually need to change the file type to modify the hydrogens. If you want to add all hydrogens
the command would be:

obabel mymols.sdf -O mymols_H.sdf -h

Some functional groups e.g. nitro or sulphone can be represented either as [N+]([O-])=O or N(=O)=O. To convert
all to the dative bond form:

obabel mymols.sdf -O outputfile.smi -b

If you only want to convert a subset of molecules you can define them using -f and -l. To convert molecules 2-4 of
the file mymols.sdf type:

obabel mymols.sdf -f 2 -l 4 -osdf -O outputfile.sdf

Alternatively you can select a subset matching a SMARTS pattern, so to select all molecules containing bromobenzene
use:

obabel mymols.sdf -O selected.sdf -s "c1ccccc1Br"

20 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Open Babel Documentation, Release 2.3.1

You can also select the subset that do not match a SMARTS pattern, so to select all molecules not containing bro-
mobenzene use:

obabel mymols.sdf -O selected.sdf -v "c1ccccc1Br"

You can of course combine options, so to join molecules and add hydrogens type:

obabel mymols.sdf -O myjoined.sdf -h -j

Files compressed with gzip are read transparently, whether or not they have a .gz suffix:

obabel compressed.sdf.gz -O expanded.smi

On platforms other than Windows, the output file can be compressed with gzip, but note if you don’t specify the .gz
suffix it will not be added automatically, which could cause problems when you try to open the file:

obabel mymols.sdf -O outputfile.sdf.gz -z

This next example reads the first 50 molecules in a compressed dataset and prints out the SMILES of those containing
a pyridine ring, together with the index in the file, the ID (taken from an SDF property) as well as the output index:

obabel chembl_02.sdf.gz -osmi -l 50 -s c1ccccn1 --append chebi_id
--addinindex --addoutindex

For the test data (taken from ChEMBLdb), this gave:

N1(CCN(CC1)c1c(cc2c3c1OCC(n3cc(c2=O)C(=O)O)C)F)C 3 100146 1
c1(c(=O)c2c(n(c1)OC)c(c(N1CC(CC1)CNCC)c(c2)F)F)C(=O)O 6 100195 2
S(=O)(=O)(Nc1ncc(cc1)C)c1c2c(c(N(C)C)ccc2)ccc1 22 100589 3
c1([nH]c2c(c1)cccc2)C(=O)N1CCN(c2c(N(CC)CC)cccn2)CC1 46 101536 4

3.4 Differences between babel and obabel

Essentially obabel is a modern version of babel with additional capabilities and a more standard interface. Over time,
obabel will replace babel and so we recommend that you start using obabel now.

Specifically, the differences are as follows:

• obabel requires that the output file be specified with a -O option. This is closer to the normal Unix convention
for commandline programs, and prevents users accidentally overwriting the input file.

• obabel is more flexible when the user needs to specify parameter values on options. For instance, the
--unique option can be used with or without a parameter (specifying the criteria used). With babel, this
only works when the option is the last on the line; with obabel, no such restriction applies. Because of the
original design of babel, it is not possible to add this capability in a backwards-compatible way.

• obabel has a shortcut for entering SMILES strings. Precede the SMILES by -: and use in place of an input file.
The SMILES string should be enclosed in quotation marks. For example:

obabel -:"O=C(O)c1ccccc1OC(=O)C" -ocan

More than one can be used, and a molecule title can be included if enclosed in quotes:

obabel -:"O=C(O)c1ccccc1OC(=O)C aspirin" -:"Oc1ccccc1C(=O)O salicylic acid"
-ofpt

• obabel cannot use concatenated single-character options.

3.4. Differences between babel and obabel 21

Open Babel Documentation, Release 2.3.1

Tip: To adapt a command line for babel into one for obabel you can usually simply put -O in front of the output
filename.

3.5 Format Options

Individual file formats may have additional formatting options. These are listed in the documentation for the individual
formats (see Supported File Formats and Options) or can be shown using the -H <format-Id> option, e.g. -H
cml.

To use these additional options, input format options are preceded by -a, e.g. -as. Output format options, which are
much more common, are preceded by -x, e.g. -xn. So to read the 2D coordinates (rather than the 3D) from a CML
file and generate an SVG file displaying the molecule on a black background, the relevant options are used as follows:

babel mymol.cml out.svg -a2 -xb

3.6 Append property values to the title

The command line option --append adds extra information to the title of the molecule.

The information can be calculated from the structure of the molecule or can originate from a property attached to the
molecule (in the case of CML and SDF input files). It is used as follows:

babel infile.sdf -osmi --append "MW CAT_NO"

MW is the ID of a descriptor which calculates the molecular weight of the molecule, and CAT_NO is a property of the
molecule from the SDF input file. The values of these are added to the title of the molecule. For input files with many
molecules these additions are specific to each molecule. (Note that the related option --addtotitle simply adds
the same text to every title.)

The append option only takes one parameter, which means that all of the descriptor IDs or property names must be
enclosed together in a single set of quotes.

If the name of the property in the SDF file (internally the Attribute in OBPairData) contains spaces, these spaces
should be replaced by underscore characters, ‘_’. So the example above would also work for a property named CAT
NO.

By default, the extra items are added to the title separated by spaces. But if the first character in the parameter is a
whitespace or punctuation character other than ‘_’, it is used as the separator instead. Note that in the GUI, because
Tab is used to move between controls, if a Tab character is required it has to be pasted in.

3.7 Filtering molecules from a multimolecule file

Six of the options above can be used to filter molecules:

• -s - convert molecules that match a SMARTS string

• -v - convert molecules that don’t match a SMARTS string

• -f and -l - convert molecules in a certain range

• --unique - only convert unique molecules (that is, remove duplicates)

• --filter - convert molecules that meet specified chemical (and other) criteria

22 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Open Babel Documentation, Release 2.3.1

This section focuses on the --filter option, which is very versatile and can select a subset of molecules based
either on properties imported with the molecule (as from a SDF file) or from calculations made by Open Babel on the
molecule.

The aim has been to make the option flexible and intuitive to use; don’t be put off by the long description.

You use it like this:

babel filterset.sdf -osmi --filter "MW<130 ROTATABLE_BOND > 2"

It takes one parameter which probably needs to be enclosed in double quotes to avoid confusing the shell or operating
system. (You don’t need the quotes with the Windows GUI.) The parameter contains one or more conditional tests.
By default, these have all to be true for the molecule to be converted. As well as this implicit AND behaviour, you
can write a full Boolean expression (see below). As you can see, there can be spaces or not in sensible places and the
conditional tests could be separated by a comma or semicolon.

You can filter on two types of property:

• An SDF property, as the identifier ROTATABLE_BOND could be. There is no need for it to be previously
known to Open Babel.

• A descriptor name (internally, an ID of an OBDescriptor object). This is a plug-in class so that new objects can
easily be added. MW is the ID of a descriptor which calculates molecular weight. You can see a list of available
descriptors using:

babel -L descriptors

or from a menu item in the GUI.

Faster filtering

Open Babel provides a number of utility file formats (see Supported File Formats and Options). Of these, using
the copy format as the output format is particularly useful when filtering (see Copy raw text (copy)). This copies
the content of the molecular file directly from input to output. If you are not converting the molecules between
different formats, this procedure is much faster and avoids any possibility of information loss.
In addition, if you are converting SDF files and are filtering based on the title, you should consider using -aT
(see MDL MOL format (mol, mdl, sdf, sd)). Rather than perceiving the chemistry of the entire molecule, this
option will only read in the title.

The descriptor names are case-insensitive. With the property names currently, you need to get the case right. Both
types of identifier can contain letters, numbers and underscores, ‘_’. Properties can contain spaces, but then when
writing the name in the filter parameter, you need to replace them with underscores. So in the example above, the test
would also be suitable for a property ‘ROTATABLE BOND’.

Open Babel uses a SDF-like property (internally this is stored in the class OBPairData) in preference to a descriptor if
one exists in the molecule. So with the example file, which can be found here:

babel filterset.sdf -osmi --filter "logP>5"

converts only a molecule with a property logP=10.900, since the others do not have this property and logP, being also
a descriptor, is calculated and is always much less than 5.

If a property does not have a conditional test, then it returns true only if it exists. So:

babel filterset.sdf -osmi --filter "ROTATABLE_BOND MW<130"

converts only those molecules with a ROTATABLE_BOND property and a molecular weight less than 130. If you
wanted to also include all the molecules without ROTATABLE_BOND defined, use:

3.7. Filtering molecules from a multimolecule file 23

http://openbabel.svn.sourceforge.net/viewvc/openbabel/openbabel/trunk/test/files/filterset.sdf?revision=1955

Open Babel Documentation, Release 2.3.1

babel filterset.sdf -osmi --filter "!ROTATABLE_BOND || (ROTATABLE_BOND & MW<130)"

The ! means negate. AND can be & or &&, OR can be | or ||. The brackets are not strictly necessary here because
& has precedent over | in the normal way. If the result of a test doesn’t matter, it is parsed but not evaluated. In the
example, the expression in the brackets is not evaluated for molecules without a ROTATABLE_BOND property. This
doesn’t matter here, but if evaluation of a descriptor involved a lot of computation, it would pay to include it late in
the boolean expression so that there is a chance it is skipped for some molecules.

Descriptors must have a conditional test and it is an error if they don’t. The default test, as used by MW or logP, is a
numerical one, but the parsing of the text, and what the test does is defined in each descriptor’s code (a virtual function
in the OBDescriptor class). Three examples of this are described in the following sections.

3.7.1 String descriptors

babel filterset.sdf -osmi --filter "title=’Ethanol’"

The descriptor title, when followed by a string (here enclosed by single quotes), does a case-sensitive string compari-
son. (‘ethanol’ wouldn’t match anything in the example file.) The comparison does not have to be just equality:

babel filterset.sdf -osmi --filter "title>=’D’"

converts molecules with titles Dimethyl Ether and Ethanol in the example file.

It is not always necessary to use the single quotes when the meaning is unambiguous: the two examples above work
without them. But a numerical, rather than a string, comparison is made if both operands can be converted to numbers.
This can be useful:

babel filterset.sdf -osmi --filter "title<129"

will convert the molecules with titles 56 123 and 126, which is probably what you wanted.

babel filterset.sdf -osmi --filter "title<’129’"

converts only 123 and 126 because a string comparison is being made.

String comparisons can use * as a wildcard. It can only be used as the first or last character of the string. So --filter
"title=’*ol’ will match molecules with titles ‘methanol’, ‘ethanol’ etc. and --filter "title=’eth*’
will match ‘ethanol’, ‘ethyl acetate’, ‘ethical solution’ etc.

3.7.2 SMARTS descriptor

This descriptor will do a SMARTS test (substructure and more) on the molecules. The smarts ID can be abbreviated
to s and the = is optional. More than one SMARTS test can be done:

babel filterset.sdf -osmi --filter "s=’CN’ s!=’[N+]’"

This provides a more flexible alternative to the existing -s and -v options, since the SMARTS descriptor test can be
combined with other tests.

3.7.3 InChI descriptor

babel filterset.sdf -osmi --filter "inchi=’InChI=1/C2H6O/c1-2-3/h3H,2H2,1H3’"

will convert only ethanol. It uses the default parameters for InChI comparison, so there may be some messages from
the InChI code. There is quite a lot of flexibility on how the InChI is presented (you can miss out the non-essential
bits):

24 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Open Babel Documentation, Release 2.3.1

babel filterset.sdf -osmi --filter "inchi=’1/C2H6O/c1-2-3/h3H,2H2,1H3’"
babel filterset.sdf -osmi --filter "inchi=’C2H6O/c1-2-3/h3H,2H2,1H3’"
babel filterset.sdf -osmi --filter "inchi=C2H6O/c1-2-3/h3H,2H2,1H3"
babel filterset.sdf -osmi --filter "InChI=1/C2H6O/c1-2-3/h3H,2H2,1H3"

all have the same effect.

The comparison of the InChI string is done only as far as the parameter’s length. This means that we can take advantage
of InChI’s layered structure:

babel filterset.sdf -osmi --filter "inchi=C2H6O"

will convert both Ethanol and Dimethyl Ether.

3.8 Substructure and similarity searching

For information on using babel for substructure searching and similarity searching, see Molecular fingerprints and
similarity searching.

3.9 Sorting molecules

The --sort option is used to output molecules ordered by the value of a descriptor:

babel infile.xxx outfile.xxx --sort desc

If the descriptor desc provides a numerical value, the molecule with the smallest value is output first. For descriptors
that provide a string output the order is alphabetical, but for the InChI descriptor a more chemically informed order is
used (e.g. “CH4” is before than “C2H6”, “CH4” is less than “ClH” hydrogen chloride).

The order can be reversed by preceding the descriptor name with ~, e.g.:

babel infile.xxx outfile.yyy --sort ~logP

As a shortcut, the value of the descriptor can be appended to the molecule name by adding a + to the descriptor, e.g.:

babel aromatics.smi -osmi --sort ~MW+
c1ccccc1C=C styrene 104.149
c1ccccc1C toluene 92.1384
c1ccccc1 benzene 78.1118

3.10 Remove duplicate molecules

The --unique option is used to remove, i.e. not output, any chemically identical molecules during conversion:

babel infile.xxx outfile.yyy --unique [param]

The optional parameter param defines what is regarded as “chemically identical”. It can be the name of any descriptor,
although not many are likely to be useful. If param is omitted, the InChI descriptor is used. Other useful descriptors
are ‘cansmi’ and ‘cansmiNS’ (canonical SMILES, with and without stereochemical information),’title’ and truncated
InChI (see below).

Note that if you want to use --unique without a parameter with babel, it needs to be last on the line. With the
alternative commandline interface, obabel, it can be anywhere after the output file.

3.8. Substructure and similarity searching 25

Open Babel Documentation, Release 2.3.1

A message is output for each duplicate found:

Removed methyl benzene - a duplicate of toluene (#1)

Clearly, this is more useful if each molecule has a title. The (#1) is the number of duplicates found so far.

If you wanted to identify duplicates but not output the unique molecules, you could use the null format:

babel infile.xxx -onul --unique

3.10.1 Truncated InChI

It is possible to relax the criterion by which molecules are regarded as “chemically identical” by using a truncated
InChI specification as param. This takes advantage of the layered structure of InChI. So to remove duplicates, treating
stereoisomers as the same molecule:

babel infile.xxx outfile.yyy --unique /nostereo

Truncated InChI specifications start with / and are case-sensitive. param can be a concatenation of these e.g.
/nochg/noiso:

/formula formula only
/connect formula and connectivity only
/nostereo ignore E/Z and sp3 stereochemistry
/nosp3 ignore sp3 stereochemistry
/noEZ ignore E/Z stereoochemistry
/nochg ignore charge and protonation
/noiso ignore isotopes

3.10.2 Multiple files

The input molecules do not have to be in a single file. So to collect all the unique molecules from a set of MOL files:

babel *.mol uniquemols.sdf --unique

If you want the unique molecules to remain in individual files:

babel *.mol U.mol -m --unique

On the GUI use the form:

babel *.mol U*.mol --unique

Either form is acceptable on the Windows command line.

The unique molecules will be in files with the original name prefixed by ‘U’. Duplicate molecules will be in similar
files but with zero length, which you will have to delete yourself.

3.11 Aliases for chemical groups

There is a limited amount of support for representing common chemical groups by an alias, e.g. benzoic acid as
Ph-COOH, with two alias groups. Internally in Open Babel, the molecule usually has a ‘real’ structure with the alias
names present as only an alternative representation. For MDL MOL and SD files alias names can be read from or
written to an ‘A’ line. The more modern RGroup representations are not yet recognized. Reading is transparent; the
alias group is expanded and the ‘real’ atoms given reasonable coordinates if the the molecule is 2D or 3D. Writing in

26 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Open Babel Documentation, Release 2.3.1

alias form, rather than the ‘real’ structure, requires the use of the -xA option. SVGFormat will also display any aliases
present in a molecule if the -xA option is set.

The alias names that are recognized are in the file superatoms.txt which can be edited.

Normal molecules can have certain common groups given alternative alias representation using the --genalias
option. The groups that are recognized and converted are a subset of those that are read. Displaying or writing them
still requires the -xA option. For example, if aspirin.smi contained O=C(O)c1ccccc1OC(=O)C, it could be
displayed with the aliases COOH and OAc by:

obabel aspirin.smi -O out.svg --genalias -xA

3.11. Aliases for chemical groups 27

Open Babel Documentation, Release 2.3.1

28 Chapter 3. obabel and babel - Convert, Filter and Manipulate Chemical Data

Chapter 4
The Open Babel GUI

The obabel command line program converts chemical objects (currently molecules or reactions) from one file format
to another. The Open Babel graphical user interface (GUI) is an alternative to using the command line and has the
same capabilities. Since Open Babel 2.3, the GUI is available cross-platform on Windows, Linux and MacOSX. On
Windows, you can find it in the Start Menu in the Open Babel folder; on Linux and MacOSX, the GUI can be started
with the obgui command.

Since the functionality of the GUI mirrors that of obabel, you should consult the previous chapter to learn about
available features and how to use them. This chapter describes the general use of the GUI and then focuses on features
that are specific to the GUI.

4.1 Basic operation

Although the GUI presents many options, the basic operation is straightforward:

• Select the type of the type of the input file from the dropdown list.

• Click the “...” button and select the file. Its contents are displayed in the textbox below.

• Choose the output format and file in a similar way. You can merely display the output without saving it by not
selecting an output file or by checking “Output below only..”.

• Click the “Convert” button.

The message window below the button gives the number of molecules converted, and the contents of the output file
are displayed.

By default, all the molecules in an input file are converted if the output format allows multiple molecules.

Figure 4.1: Screenshot of GUI running on BioLinux 6.0, an Ubuntu derivative

4.2 Options

The options in the middle are those appropriate for the type of chemical object being converted (molecule or reaction)
and the input and output formats. They are derived from the description text that is displayed with the -Hxxx option
in the command line interface and with the “Format info” buttons here. You can switch off the display of any of the
various types of option using the View menu if the screen is getting too cluttered.

29

Open Babel Documentation, Release 2.3.1

4.3 Multiple input files

You can select multiple input files in the input file dialog in the normal way (for example, using the Control key in
Windows). In the input filename box, each filename is displayed relative to the path shown just above the box, which
is the path of the first file. You can display any of the files by moving the highlight with Tab/Shift Tab, Page Up/Down,
the mouse wheel, or by double clicking.

Selecting one or more new file names normally removes those already present, but they can instead be appended by
holding the Control key down when leaving the file selection dialog.

Files can be also be dragged and dropped (e.g. from Windows Explorer), adding the file when the Control key is
pressed, replacing the existing files when it is not.

Normally each file is converted according to its extension and the input files do not have to be all the same, but if you
want to use non-standard file names set the checkbox “Use this format for all input files...“

If you want to combine multiple molecules (from one or more files) into a single molecule with disconnected parts,
use option “Join all input molecules...“

4.4 Wildcards in filenames

When input filenames are typed in directly, any of them can contain the wildcard characters * and ?. Typing Enter
will replace these by a list of the matching files. The wildcarded names can be restored by typing Enter while holding
down the Shift key. The original or the expanded versions will behave the same when the “Convert” button is pressed.

By including the wildcard * in both the input and output filenames you can carry out batch conversion. Suppose
there were files first.smi, second.smi, third.smi. Using *.smi as the input filename and *.mol as the
output filename would produce three files first.mol, second.mol and third.mol. If the output filename was
NEW_*.mol, then the output files would be NEW_first.mol, etc.

4.5 Local input

By checking the “Input below...” checkbox you can type the input text directly. The text box changes colour to remind
you that it is this text and not the contents of any files that will be converted.

4.6 Output file

The output file name can be fully specified with a path, but if it is not, then it is considered to be relative to the input
file path.

4.7 Graphical display

The chemical structures being converted can be displayed (as SVG) in an external program. By default this is Firefox
but it can be changed from an item on the View menu (for instance, Opera and Chrome work fine). When “Display
in firefox” (under the output file name) is checked, the structures will be shown in a new Firefox tab. With multiple
molecules the display can be zoomed (mousewheel) and panned (dragging with mouse button depressed). Up to 100
molecules are easily handled but with more the system may be slow to manipulate. It may also be slow to generate,
especially if 2D atom coordinates have to be calculated (e.g.from SMILES). A new Firefox tab is opened each time
Convert is pressed.

30 Chapter 4. The Open Babel GUI

Open Babel Documentation, Release 2.3.1

4.8 Using a restricted set of formats

It is likely that you will only be interested in a subset of the large range of formats handled by Open Babel. You
can restrict the choice offered in the dropdown boxes, which makes routine selection easier. Clicking “Select set of
formats” on the View menu allows the formats to be displayed to be selected. Subsequently, clicking “Use restricted
set of formats” on the View menu toggles this facility on and off.

Using a restricted set overcomes an irritating bug in the Windows version. In the file Open and Save dialogs the
files displayed can be filtered by the current format, All Chemical Formats, or All Files. The All Chemical Formats
filter will only display the first 30 possible formats (alphabetically). The All Files will indeed display all files and the
conversion processes are unaffected.

4.9 Other features

Most of the interface parameters, such as the selected format and the window size and position, are remembered
between sessions.

Using the View menu, the input and output text boxes can be set not to wrap the text. At present you have to restart the
program for this to take effect.

The message box at the top of the output text window receives program output on error and audit logging, and some
progress reports. It can be expanded by dragging down the divider between the windows.

4.10 Example files

In the Windows distribution, there are three chemical files included to try out:

• serotonin.mol which has 3D atom coordinates

• oxamide.cml which is 2D and has a large number of properties that will be seen when converting to SDF

• FourSmallMols.cml which (unsurprisingly) contains four molecules with no atom coordinates and can be used
to illustrate the handling of multiple molecules:

Setting the output format to SMI (which is easy to see), you can convert only the second and third molecules by
entering 2 and 3 in the appropriate option boxes. Or convert only molecules with C-O single bonds by entering
CO in the SMARTS option box.

4.8. Using a restricted set of formats 31

Open Babel Documentation, Release 2.3.1

32 Chapter 4. The Open Babel GUI

Chapter 5
Molecular fingerprints and similarity searching

Molecular fingerprints are a way of encoding the structure of a molecule. The most common type of fingerprint
is a series of binary digits (bits) that represent the presence or absence of particular substructures in the molecule.
Comparing fingerprints allows you to determine the similarity between two molecules, to find matches to a query
substructure, etc.

Open Babel provides several fingerprints of different types:

• Fingerprint format: the path-based fingerprint FP2; substructure based fingerprints FP3, FP4 and MACCS;
user-defined substructures

• Multilevel Neighborhoods of Atoms (MNA) (mna): a circular fingerprint

• MolPrint2D format (mpd): a circular fingerprint

• Spectrophores™: a fingerprint that encodes the 3D structure of a molecule

The next two sections describe the Fingerprint format and Spectrophores in depth. For the others, see the relevant
sections listed above.

5.1 Fingerprint format

The Fingerprint format (fpt) is a utility file format that provides access to a number of substructure-based fingerprints,
and that enables the user to carry out similarity and substructure searching. You can see the available fingerprints using
the following command:

$ babel -L fingerprints
FP2 Indexes linear fragments up to 7 atoms.
FP3 SMARTS patterns specified in the file patterns.txt
FP4 SMARTS patterns specified in the file SMARTS_InteLigand.txt
MACCS SMARTS patterns specified in the file MACCS.txt

At present there are four types of fingerprints:

• FP2, a path-based fingerprint which indexes small molecule fragments based on linear segments of up to 7
atoms (somewhat similar to the Daylight fingerprints):

A molecule structure is analysed to identify linear fragments of length from 1-7 atoms. Single atom
fragments of C, N, and O are ignored. A fragment is terminated when the atoms form a ring.

For each of these fragments the atoms, bonding and whether they constitute a complete ring is
recorded and saved in a set so that there is only one of each fragment type. Chemically identical
versions, (i.e. ones with the atoms listed in reverse order and rings listed starting at different atoms)
are identified and only a single canonical fragment is retained.

Each remaining fragment is assigned a hash number from 0 to 1020 which is used to set a bit in a
1024 bit vector

33

Open Babel Documentation, Release 2.3.1

• FP3 uses a series of SMARTS queries stored in patterns.txt

• FP4 uses a series of SMARTS queries stored in SMARTS_InteLigand.txt

• MACCS uses the SMARTS patterns in MACCS.txt

Note: Note that you can tailor the latter three fingerprints to your own needs by adding your own SMARTS queries
to these files. On UNIX and Mac systems, these files are frequently found in /usr/local/share/openbabel
under a directory for each version of Open Babel.

See Also:

The sections on the fingerprint and fastsearch formats contain additional detail.

5.1.1 Similarity searching

Small datasets

For relatively small datasets (<10,000’s) it is possible to do similarity searches without the need to build a similarity
index, however larger datasets (up to a few million) can be searched rapidly once a fastsearch index has been built.

On small datasets these fingerprints can be used in a variety of ways. The following command gives you the Tanimoto
coefficient between a SMILES string in mysmiles.smi and all the molecules in mymols.sdf:

babel mysmiles.smi mymols.sdf -ofpt

MOL_00000067 Tanimoto from first mol = 0.0888889
MOL_00000083 Tanimoto from first mol = 0.0869565
MOL_00000105 Tanimoto from first mol = 0.0888889
MOL_00000296 Tanimoto from first mol = 0.0714286
MOL_00000320 Tanimoto from first mol = 0.0888889
MOL_00000328 Tanimoto from first mol = 0.0851064
MOL_00000338 Tanimoto from first mol = 0.0869565
MOL_00000354 Tanimoto from first mol = 0.0888889
MOL_00000378 Tanimoto from first mol = 0.0816327
MOL_00000391 Tanimoto from first mol = 0.0816327
11 molecules converted

The default fingerprint used is the FP2 fingerprint. You change the fingerprint using the f output option as follows:

babel mymols.sdf -ofpt -xfFP3

The -s option of babel is used to filter by SMARTS string. If you wanted to know the similarity only to the substituted
bromobenzenes in mymols.sdf then you might combine commands like this (note: if the query molecule does not
match the SMARTS string this will not work as expected, as the first molecule in the database that matches the
SMARTS string will instead be used as the query):

babel mysmiles.smi mymols.sdf -ofpt -s c1ccccc1Br

MOL_00000067 Tanimoto from first mol = 0.0888889
MOL_00000083 Tanimoto from first mol = 0.0869565
MOL_00000105 Tanimoto from first mol = 0.0888889

If you don’t specify a query file, babel will just use the first molecule in the database as the query:

babel mymols.sdf -ofpt

MOL_00000067

34 Chapter 5. Molecular fingerprints and similarity searching

Open Babel Documentation, Release 2.3.1

MOL_00000083 Tanimoto from MOL_00000067 = 0.810811
MOL_00000105 Tanimoto from MOL_00000067 = 0.833333
MOL_00000296 Tanimoto from MOL_00000067 = 0.425926
MOL_00000320 Tanimoto from MOL_00000067 = 0.534884
MOL_00000328 Tanimoto from MOL_00000067 = 0.511111
MOL_00000338 Tanimoto from MOL_00000067 = 0.522727
MOL_00000354 Tanimoto from MOL_00000067 = 0.534884
MOL_00000378 Tanimoto from MOL_00000067 = 0.489362
MOL_00000391 Tanimoto from MOL_00000067 = 0.489362
10 molecules converted

Large datasets

On larger datasets it is necessary to first build a fastsearch index. This is a new file that stores a database of fingerprints
for the files indexed. You will still need to keep both the new .fs fastsearch index and the original files. However, the
new index will allow significantly faster searching and similarity comparisons. The index is created with the following
command:

babel mymols.sdf -ofs

This builds mymols.fs with the default fingerprint (unfolded). The following command uses the index to find the 5
most similar molecules to the molecule in query.mol:

babel mymols.fs results.sdf -squery.mol -at5

or to get the matches with Tanimoto>0.6 to 1,2-dicyanobenzene:

babel mymols.fs results.sdf -sN#Cc1ccccc1C#N -at0.6

5.1.2 Substructure searching

Small datasets

This command will find all molecules containing 1,2-dicyanobenzene and return the results as SMILES strings:

babel mymols.sdf -sN#Cc1ccccc1C#N results.smi

If all you want output are the molecule names then adding -xt will return just the molecule names:

babel mymols.sdf -sN#Cc1ccccc1C#N results.smi -xt

The parameter of the -s option in these examples is actually SMARTS, which allows a richer matching specification,
if required. It does mean that the aromaticity of atoms and bonds is significant; use [#6] rather than C to match both
aliphatic and aromatic carbon.

The -s option’s parameter can also be a file name with an extension. The file must contain a molecule, which means
only substructure matching is possible (rather than full SMARTS). The matching is also slightly more relaxed with
respect to aromaticity.

Large datasets

First of all, you need to create a fastsearch index (see above). The index is created with the following command:

babel mymols.sdf -ofs

5.1. Fingerprint format 35

Open Babel Documentation, Release 2.3.1

Substructure searching is as for small datasets, except that the fastsearch index is used instead of the original file. This
command will find all molecules containing 1,2-dicyanobenzene and return the results as SMILES strings:

babel mymols.fs -ifs -sN#Cc1ccccc1C#N results.smi

If all you want output are the molecule names then adding -xt will return just the molecule names:

babel mymols.fs -ifs -sN#Cc1ccccc1C#N results.smi -xt

5.1.3 Case study: Search ChEMBLdb

This case study uses a combination of the techniques described above for similarity searching using large databases and
using small databases. Note that we are using the default fingerprint for all of these analyses. The default fingerprint
is FP2, a path-based fingerprint (somewhat similar to the Daylight fingerprints).

1. Download Version 2 of ChEMBLdb from ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/.

2. After unzipping it, make a fastsearch index (this took 18 minutes on my machine for the 500K+ molecules):

babel chembl_02.sdf -ofs

3. Let’s use the first molecule in the sdf file as a query. Using Notepad (or on Linux, head -79
chembl_02.sdf) extract the first molecule and save it as first.sdf. Note that the molecules in the
ChEMBL sdf do not have titles; instead, their IDs are stored in the “chebi_id” property field.

4. This first molecule is 100183. Check its ChEMBL page. It’s pretty weird, but is there anything similar in
ChEMBLdb? Let’s find the 5 most similar molecules:

babel chembl_02.fs mostsim.sdf -s first.sdf -at5

5. The results are stored in mostsim.sdf, but how similar are these molecules to the query?:

babel first.sdf mostsim.sdf -ofpt
>
> Tanimoto from first mol = 1
Possible superstructure of first mol
> Tanimoto from first mol = 0.986301
> Tanimoto from first mol = 0.924051
Possible superstructure of first mol
> Tanimoto from first mol = 0.869048
Possible superstructure of first mol
> Tanimoto from first mol = 0.857143
6 molecules converted
76 audit log messages

6. That’s all very well, but it would be nice to show the ChEBI IDs. Let’s set the title field of mostsim.sdf to
the content of the “chebi_id” property field, and repeat step 5:

babel mostsim.sdf mostsim_withtitle.sdf --append "chebi_id"
babel first.sdf mostsim_withtitle.sdf -ofpt
>
>100183 Tanimoto from first mol = 1
Possible superstructure of first mol
>124893 Tanimoto from first mol = 0.986301
>206983 Tanimoto from first mol = 0.924051
Possible superstructure of first mol
>207022 Tanimoto from first mol = 0.869048
Possible superstructure of first mol
>607087 Tanimoto from first mol = 0.857143

36 Chapter 5. Molecular fingerprints and similarity searching

ftp://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/
http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/100183

Open Babel Documentation, Release 2.3.1

6 molecules converted
76 audit log messages

7. Here are the ChEMBL pages for these molecules: 100183, 124893, 206983, 207022, 607087. I think it is
fair to say that they are pretty similar. In particular, the output states that 206983 and 207022 are possible
superstructures of the query molecule, and that is indeed true.

8. How many of the molecules in the dataset are superstructures of the molecule in first.sdf? To do this and
to visualize the large numbers of molecules produced, we can output to SVG format (see SVG 2D depiction
(svg)):

obabel chembl_02.fs -O out.svg -s first.sdf

Note that obabel has been used here because of its more flexible option handling.

This command does a substructure search and puts the 47 matching structures in the file out.svg.
This can be viewed in a browser like Firefox, Opera or Chrome (but not Internet Explorer). The display
will give an overall impression of the set of molecules but details can be seen by zooming in with the
mousewheel and panning by dragging with a mouse button depressed.

9. The substructure that is being matched can be highlighted in the output molecules by adding another parameter
to the -s option. Just for variety, the display is also changed to a black background, ‘uncolored’ (no element-
specific coloring), and terminal carbon not shown explicitly. (Just refresh your browser to see the modified
display.)

obabel chembl_02.fs -O out.svg -s first.sdf green -xb -xu -xC

This highlighting option also works when the -s option is used without fastsearch on small datasets.

10. The substructure search here has two stages. The indexed fingerprint search quickly produces 62 matches from
the 500K+ molecules in the dataset. Each of these is then checked by a slow detailed isomorphism check. There
are 15 false positives from the fingerprint stage. These are of no significance, but you can see them using:

obabel chembl_02.fs -O out.svg -s ~first.sdf

The fingerprint search is unaffected but the selection in the second stage is inverted.

5.2 Spectrophores™

5.2.1 Introduction

Spectrophores1 are one-dimensional descriptors generated from the property fields surrounding the molecules. This
technology allows the accurate description of molecules in terms of their surface properties or fields. Comparison of
molecules’ property fields provides a robust structure-independent method of aligning actives from different chemical
classes. When applied to molecules such as ligands and drugs, Spectrophores can be used as powerful molecular
descriptors in the fields of chemoinformatics, virtual screening, and QSAR modeling.

1 Spectrophore is a registered trademark of Silicos NV.

5.2. Spectrophores™ 37

http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/100183
http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/124893
http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/206983
http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/207022
http://www.ebi.ac.uk/chembldb/index.php/compound/inspect/607087

Open Babel Documentation, Release 2.3.1

Commercial Support for Spectrophores

Commercial support for Spectrophores is available from Silicos NV, the developers of the Spectrophore technol-
ogy.
Silicos is a fee-for-service company empowering open source chemo-informatics virtual screening technologies
for the discovery of novel lead compounds and database characterization. Silicos fully endorses the concept of
open innovation and open source software development, and provides its clients with a wide variety of computa-
tional chemistry-based lead discovery services, including Open Babel support, training and code development.
Please visit Silicos for more details.

The computation of Spectrophores is independent of the position and orientation of the molecule and this enables
easy and fast comparison of Spectrophores between different molecules. Molecules having similar three-dimensional
properties and shapes always yield similar Spectrophores. A Spectrophore is calculated by surrounding the three-
dimensional conformation of the molecule by a three-dimensional arrangement of points, followed by calculating the
interaction between each of the atom properties and the surrounding the points. The three-dimensional arrangement of
the points surrounding the molecule can be regarded as an ‘artificial’ cage or receptor, and the interaction calculated
between the molecule and the cage can be regarded as an artificial representation of an affinity value between molecule
and cage. Because the calculated interaction is dependent on the relative orientation of the molecule within the cage,
the molecule is rotated in discrete angles and the most favorable interaction value is kept as final result. The angular
stepsize at which the molecule is rotated along its three axis can be specified by the user and influences the accuracy
of the method.

The Spectrophore code was developed by Silicos NV, and donated to the OpenBabel project in July 2010 (see sidebar
for information on commercial support). Spectrophores can be generated either using the command-line application
obspectrophore (see next section) or through the API (OBSpectrophore, as described in the API documentation).

5.2.2 obspectrophore

Usage

obspectrophore -i <input file> [options]

Parameter details

-i <input file> Specify the input file

Spectrophores will be calculated for each molecule in the input file. The filetype
is automatically detected from the file extension.

-n <type> The type of normalization that should be performed

Valid values are (without quotes):

• No (default)

• ZeroMean

• UnitStd

• ZeroMeanAndUnitStd

-a <accuracy> The required accuracy expressed as the angular stepsize

Only the following discrete values are allowed: 1, 2, 5, 10, 15, 20 (default), 30,
36, 45, 60

38 Chapter 5. Molecular fingerprints and similarity searching

http://www.silicos.com
http://openbabel.org/dev-api/classOpenBabel_1_1OBSpectrophore.shtml

Open Babel Documentation, Release 2.3.1

-s <type> The kind of cages that should be used

The cage type is specified in terms of the underlying pointgroup: P1 or P-1. Valid
values are (without quotes):

• No (default)

• Unique

• Mirror

• All

-r <resolution> The required resolution expressed as a real positive number

The default value is 3.0 Angstrom. Negative values or a value of 0 generates an
error message.

-h Displays help

5.2.3 Implementation

Atomic properties

The calculation of a Spectrophore™ starts by calculating the atomic contributions of each property from which one
wants to calculate a Spectrophore. In the current implementation, four atomic properties are converted into a Spec-
trophore; these four properties include the atomic partial charges, the atomic lipophilicities, the atomic shape devia-
tions and the atomic electrophilicities. The atomic partial charges and atomic electrophilicity properties are calculated
using the electronegativity equalisation method (EEM) as described by Bultinck and coworkers [bll2002] [blc2003].
Atomic lipophilic potential parameters are calculated using a rule-based method. Finally, the atomic shape deviation
is generated by calculating, for each atom, the atom’s deviation from the average molecular radius. This is done in a
four step process:

• The molecular center of geometry (COG) is calculated

• The distances between each atom and the molecular COG are calculated

• The average molecular radius is calculated by averaging all the atomic distances

• The distances between each atom and the COG are then divided by the average molecular radius and centered
on zero

Interaction between the atoms and cage points

Following the calculation of all required atomic properties, the next step in the calculation of a Spectrophore consists
of determining the total interaction value V(c,p) between each of the atomic contributions of property p with a set of
interaction points on an artificial cage c surrounding the molecular conformation.

For this purpose, each of these interaction points i on cage c is assigned a value P(c,i) which is either +1 or -1, with the
constraint that the sum of all interaction points on a particular cage should be zero. In a typical Spectrophore calcula-
tion, a cage is represented as a rectangular box encompassing the molecular conformation in all three dimensions, with
the centers of the box edges being the interaction points. Such a configuration gives twelve interaction points per cage,
and, in the case of a non-stereospecific distribution of the interaction points, leads to 12 different cages. Although
there are no particular requirements as to the dimensions of the rectangular cage, the distance between the interaction
points and the geometrical extremes of the molecule should be such that a meaningful interaction value between each
cage point and the molecular entity can be calculated. In this respect, the default dimensions of the cage are constantly
adjusted to enclose the molecule at a minimum distance of 3 A along all dimensions. This cage size can be modified
by the user and influences the resolution of the Spectrophore.

5.2. Spectrophores™ 39

Open Babel Documentation, Release 2.3.1

Figure 5.1: Schematic representation of a molecule surrounded by the artifical cage

The total interaction value V(c,p) between the atomic contribution values A(j,p) of property p for a given molecular
conformation and the cage interaction values P(c,i) for a given cage c is calculated according a standard interaction
energy equation. It takes into account the Euclidean distance between each atom and each cage point. This total
interaction V(c,p) for a given property p and cage c for a given molecular conformation is minimized by sampling
the molecular orientation along the three axis in angular steps and the calculation of the interaction value for each
orientation within the cage.

The final total interaction V(c,p) for a given cage c and property p corresponds to the lowest interaction value obtained
this way, and corresponds to the c’th value in the one-dimensional Spectrophore vector calculated for molecular
property p. As a result, a Spectrophore is organized as a vector of minimized interaction values V, each of these
organized in order of cages and property values. Since for a typical Spectrophore implementation twelve different
cages are used, the total length of a Spectrophore vector equals to 12 times the number of properties. Since four
different properties are used in the current implementation (electrostatic, lipophilic, electrophilic potentials, and an
additional shape index as described before), this leads to a total Spectrophore length of 48 real values per molecular
conformation.

Since Spectrophore descriptors are dependent on the actual three-dimensional conformation of the molecule, a typical
analysis includes the calculation of Spectrophores from a reasonable set of different conformations. It is then up to
the user to decide on the most optimal strategy for processing the different Spectrophore vectors. In a typical virtual
screening application, calculating the average Spectrophore vector from all conformations of a single molecule may
be a good strategy; other applications have benefit from calculating a weighted average or the minimal values. For
each molecule in the input file, a Spectrophore is calculated and printed to standard output as a vector of 48 numbers
(in the case of a non-stereospecific Spectrophore. The 48 doubles are organised into 4 sets of 12 doubles each:

• numbers 01-11: Spectrophore values calculated from the atomic partial charges;

• numbers 13-24: Spectrophore values calculated from the atomic lipophilicity properties;

• numbers 25-36: Spectrophore values calculated from the atomic shape deviations;

• numbers 37-48: Spectrophore values calculated from the atomic electrophilicity properties;

40 Chapter 5. Molecular fingerprints and similarity searching

Open Babel Documentation, Release 2.3.1

5.2.4 Choice of Parameters

Accuracy

As already mentioned, the total interaction between cage and molecule for a given property is minimized by sampling
the molecular orientation in angular steps of a certain magnitude. As a typical angular step size, 20 degrees was found
to be the best compromise between accuracy and computer speed. Larger steps sizes are faster to calculate but have
the risk of missing the global interaction energy minimum, while smaller angular steps sizes do sample the rotational
space more thoroughly but at a significant computational cost. The accuracy can be specified by the user using the -a
option.

Resolution

Spectrophores capture information about the property fields surrounding the molecule, and the amount of detail that
needs to be captured can be regulated by the user. This is done by altering the minimal distance between the molecule
and the surrounding cage. The resolution can be specified by the user with the -r option. The default distance along
all dimensions is 3.0 Angstrom. The larger the distance, the lower the resolution.

With a higher resolution, more details of the property fields surrounding the molecule are contained by the Spec-
trophore. On the other hand, low resolution settings may lead to a more general representation of the property fields,
with little or no emphasis on small local variations within the fields. Using a low resolution can be the method of choice
during the initial virtual screening experiments in order to get an initial, but not so discriminative, first selection. This
initial selection can then further be refined during subsequent virtual screening steps using a higher resolution. In this
setting, small local differences in the fields between pairs of molecules will be picked up much more easily.

The absolute values of the individual Spectrophore data points are dependent on the used resolution. Low resolution
values lead to small values of the calculated individual Spectrophore data points, while high resolutions will lead to
larger data values. It is therefore only meaningful to compare only Spectrophores that have been generated using the
same resolution settings or after some kind of normalization is performed. Computation time is not influenced by the
specified resolution and hence is identical for all different resolution settings.

Stereospecificity

Some of the cages that are used to calculated Spectrophores have a stereospecific distribution of the interaction points.
The resulting interaction values resulting from these cages are therefore sensitive to the enantiomeric configuration
of the molecule within the cage. The fact that both stereoselective as well as stereo non-selective cages can be used
makes it possible to include or exclude stereospecificity in the virtual screening search. Depending on the desired
output, the stereospecificity of Spectrophores can be specified by the user using the -s option:

• No stereospecificity (default): Spectrophores are generated using cages that are not stereospecific. For most
applications, these Spectrophores will suffice.

• Unique stereospecificity: Spectrophores are generated using unique stereospecific cages.

• Mirror stereospecificity: Mirror stereospecific Spectrophores are Spectrophores resulting from the mirror
enantiomeric form of the input molecules.

The differences between the corresponding data points of unique and mirror stereospecific Spectrophores are very
small and require very long calculation times to obtain a sufficiently high quality level. This increased quality level
is triggered by the accuracy setting and will result in calculation times being increased by at least a factor of 100.
As a consequence, it is recommended to apply this increased accuracy only in combination with a limited number
of molecules, and when the small differences between the stereospecific Spectrophores are really critical. However,
for the vast majority of virtual screening applications, this increased accuracy is not required as long as it is not
the intention to draw conclusions about differences in the underlying molecular stereoselectivity. Non-stereospecific
Spectrophores will therefore suffice for most applications.

5.2. Spectrophores™ 41

Open Babel Documentation, Release 2.3.1

Normalisation

It may sometimes be desired to focus on the relative differences between the Spectrophore data points rather than
focussing on the absolute differences. In these cases, normalization of Spectrophores may be required. The current
implementation offers with the -n option the possibility to normalize in four different ways:

• No normalization (default)

• Normalization towards zero mean

• Normalization towards standard deviation

• Normalization towards zero mean and unit standard deviation

In all these cases, normalization is performed on a ‘per-property’ basis, which means that the data points belonging
to the same property set are treated as a single set and that normalization is only performed on the data points within
each of these sets and not across all data points.

Normalization may be important when comparing the Spectrophores of charged molecules with those of neutral
molecules. For molecules carrying a global positive charge, the resulting Spectrophore data points of the charge
and electrophilicity properties will both be shifted in absolute value compared to the corresponding data points of
the respective neutral species. Normalization of the Spectrophores removes the original magnitude differences for
the data points corresponding to the charge and electrophilicity properties of charged and neutral species. Therefore,
if the emphasis of the virtual screening consists of the identification of molecules with similar property fields with-
out taking into account differences in absolute charge, then Spectrophores should be normalized towards zero mean.
However, if absolute charge differences should be taken into account to differentiate between molecules, unnormalized
Spectrophores are recommended.

42 Chapter 5. Molecular fingerprints and similarity searching

Chapter 6
obabel vs Chemistry Toolkit Rosetta

The Chemistry Toolkit Rosetta is the brainchild of Andrew Dalke. It is a website that illustrates how to program
various chemical toolkits to do a set of tasks. To make it easily understandable, these tasks are probably on the simpler
side of those in the real world. The Rosetta already contains several examples of using the Open Babel Python bindings
to carry out tasks.

Here we focus on the use of the command line application obabel to accomplish the tasks listed in the Rosetta.
Inevitably we will struggle with more complicated tasks; however this section is intended to show how far you can go
simply using obabel, and to illustrate some of its less common features. Some of the tasks cannot be done exactly as
specified, but they are are usually close enough to useful.

Note that except for the examples involving piping, the GUI could also be used. Also the copy output format at present
works only for files with Unix line endings.

6.1 Heavy atom counts from an SD file

For each record from the benzodiazepine file, print the total number of heavy atoms in each record (that
is, exclude hydrogens). The output is one output line per record, containing the count as an integer. If at
all possible, show how to read directly from the gzip’ed input SD file.

obabel benzodiazepine.sdf.gz -otxt --title "" --append atoms -d -l5

The txt format outputs only the title but we set that to nothing and then append the result. The atoms descriptor counts
the number of atoms after the -d option has removed the hydrogens. The -l5 limits the output to the first 5 molecules,
in case you really didn’t want to print out results for all 12386 molecules.

6.2 Convert a SMILES string to canonical SMILES

Parse two SMILES strings and convert them to canonical form. Check that the results give the same string.

obabel -:"CN2C(=O)N(C)C(=O)C1=C2N=CN1C" -:"CN1C=NC2=C1C(=O)N(C)C(=O)N2C" -ocan

giving:

Cn1cnc2c1c(=O)n(C)c(=O)n2C
Cn1cnc2c1c(=O)n(C)c(=O)n2C
2 molecules converted

43

http://ctr.wikia.com/wiki/Chemistry_Toolkit_Rosetta_Wiki

Open Babel Documentation, Release 2.3.1

6.3 Report how many SD file records are within a certain molecular
weight range

Read the benzodiazepine file and report the number of records which contain a molecular weight between
300 and 400.

obabel benzodiazepine.sdf.gz -onul --filter "MW>=300 MW<=400"
3916 molecules converted

6.4 Convert SMILES file to SD file

Convert a SMILES file into an SD file. The conversion must do its best to use the MDL conventions for
the SD file, including aromaticity perception. Note that the use of aromatic bond types in CTABs is only
allowed for queries, so aromatic structures must be written in a Kekule form. Because the stereochemistry
of molecules in SD files is defined solely by the arrangement of atoms, it is necessary to assign either 2D
or 3D coordinates to the molecule before generating output. The coordinates do not have to be reasonable
(i.e. it’s ok if they would make a chemist scream in horror), so long as the resulting structure is chemically
correct.

obabel infile.smi -O outfile.sdf --gen3D

6.5 Report the similarity between two structures

Report the similarity between “CC(C)C=CCCCCC(=O)NCc1ccc(c(c1)OC)O” (PubChem CID 1548943)
and “COC1=C(C=CC(=C1)C=O)O” (PubChem CID 1183).

Two types of fingerprint are used: the default FP2 path-based one, and FP4 which is structure key based:

obabel -:"CC(C)C=CCCCCC(=O)NCc1ccc(c(c1)OC)O" -:"COC1=C(C=CC(=C1)C=O)O" -ofpt
Tanimoto from first mol = 0.360465

obabel -:"CC(C)C=CCCCCC(=O)NCc1ccc(c(c1)OC)O" -:"COC1=C(C=CC(=C1)C=O)O" -ofpt
-xfFP4

Tanimoto from first mol = 0.277778

6.6 Find the 10 nearest neighbors in a data set

The data will come from the gzip’ed SD file of the benzodiazepine data set. Use the first structure as
the query structure, and use the rest of the file as the targets to find the 10 most similar structures. The
output is sorted by similarity, from most similar to least. Each target match is on its own line, and the line
contains the similarity score in the first column in the range 0.00 to 1.00 (preferably to 2 decimal places),
then a space, then the target ID, which is the title line from the SD file.

A fastsearch index, using the default FP2 fingerprint, is prepared first:

obabel benzodiazepine.sdf -ofs

The query molecule (first in the file) is extracted:

obabel benzodiazepine.sdf -O first.sdf -l1

44 Chapter 6. obabel vs Chemistry Toolkit Rosetta

Open Babel Documentation, Release 2.3.1

The similarity search of the index file for the 10 most similar molecules is done. The output is to Title format (txt),
with the -aa option of Fastsearch format (fs) adding the Tanimoto score:

obabel benzodiazepine.fs -otxt -s first.sdf -at 10 -aa

623918 1
450820 1
1688 1
20351792 0.993007
9862446 0.986111
398658 0.97931
398657 0.97931
6452650 0.978873
450830 0.978873
3016 0.978873
10 molecules converted

The Tanimoto coefficient comes second, rather than first as requested and is not formatted to two decimal places, but
the information is still there.

6.7 Depict a compound as an image

Depict the SMILES “CN1C=NC2=C1C(=O)N(C(=O)N2C)C” as an image of size 200x250 pixels. The
image should be in PNG format if possible, otherwise in GIF format. If possible, give it the title “Caf-
feine”. It should display the structure on a white background.

Open Babel does not at present output as PNG or GIF, but does as SVG:

obabel -:"CN1C=NC2=C1C(=O)N(C(=O)N2C)C Caffeine" -O out.svg

6.8 Highlight a substructure in the depiction

Read record 3016 from the benzodiazepine SD file. Find all atoms which match the SMARTS
“c1ccc2c(c1)C(=NCCN2)c3ccccc3” and highlight them in red. All other atoms must be drawn in black.

The resulting image should be 200x250 pixels and on a white background. The resulting image file should
be in PNG (preferred) or GIF format.

obabel benzodiazepine.sdf.gz -O out.svg --filter "title=3016"
-s "c1ccc2c(c1)C(=NCCN2)c3ccccc3 red" -xu -d

Since version 2.3.0, Open Babel can output 2D structures as SVG, but not yet as PNG or GIF. The compressed data
file can be used as input. The -d makes hydrogen implicit and the -xu removes the element-specific coloring.

This is slow (about a minute) because each molecule is fully interpreted, although in most cases only the title is
required. The task can be done 10 times faster by using the uncompressed file, converting only the title (the -aT
option) and copying the SD text to standard out when a match occurs. This is piped to a second command which
outputs the structure.:

obabel benzodiazepine.sdf -ocopy --filter "title=3016" -aT |
obabel -isdf -O out.svg -s "c1ccc2c(c1)C(=NCCN2)c3ccccc3 red" -xu -d

6.7. Depict a compound as an image 45

Open Babel Documentation, Release 2.3.1

6.9 Align the depiction using a fixed substructure

Use the first 16 structures of the benzodiazepine SD file to make a 4x4 grid of depictions as a single image.
The first structure is in the upper-left corner, the second is to its right, and so on. Each depiction should
include the title field of the corresponding record, which in this case is the PubChem identifier.

Use “[#7]~1~[#6]~[#6]~[#7]~[#6]~[#6]~2~[#6]~[#6]~[#6]~[#6]~[#6]12” as the common SMARTS
substructure. This is the fused ring of the benzodiazepine system but without bond type or atom aro-
maticity information. Use the first molecule as the reference depiction. All other depictions must have the
depiction of their common substructure aligned to the reference.

In Open Babel 2.3.1 this can be done in one line:

obabel benzodiazepine.sdf.gz -O out.svg --align -d -xu
-s"[#7]~1~[#6]~[#6]~[#7]~[#6]~[#6]~2~[#6]~[#6]~[#6]~[#6]~[#6]12 green"

The depiction has some cosmetic tweaks: the substructure is highlighted in green; -d removes hydrogen; -xu removes
the element specific coloring.

In earlier versions the obfit program can be used. First extract the first molecule for the reference and the first 16 to be
displayed:

obabel benzodiazepine.sdf.gz -O firstbenzo.sdf -l1
obabel benzodiazepine.sdf.gz -O sixteenbenzo.sdf -l16

Then use the program obfit, which is distributed with Open Babel:

obfit "[#7]~1~[#6]~[#6]~[#7]~[#6]~[#6]~2~[#6]~[#6]~[#6]~[#6]~[#6]12"
firstbenzo.sdf sixteenbenzo.sdf > 16out.sdf

Display the 16 molecules (with implicit hydrogens):

obabel 16out.sdf -O out.svg -d

6.10 Perform a substructure search on an SDF file and report the
number of false positives

The sample database will be gzip’ed SD file of the benzodiazepine data set. The query structure will be
defined as “C1C=C(NC=O)C=CC=1”.

The default FP2 fingerprint is sensitive to whether a bond is aromatic or not. So this Kekule structure needs to be
converted to its aromatic form. As this happens automatically on conversion, the easiest way is to store the SMILES
string in a file, and use this file to specify the search pattern.

Prepare an index (of the unzipped data file):

obabel benzodiazepine.sdf -ofs

Do the substructure search. A very large number of molecules match the query, so the maximum number of hits has
to be increased with the -al 9000 option. By virtue of the ~ it is the false positives that are output (to nowhere) but
their number is reported:

obabel benzodiazepine.fs -onul -s ~substruct.smi -al 9000
8531 candidates from fingerprint search phase
12 molecules converted

46 Chapter 6. obabel vs Chemistry Toolkit Rosetta

Open Babel Documentation, Release 2.3.1

6.11 Calculate TPSA

The goal of this task is get an idea of how to do a set of SMARTS matches when the data comes in from
an external table.

Write a function or method named “TPSA” which gets its data from the file “tpsa.tab”. The function
should take a molecule record as input, and return the TPSA value as a float. Use the function to calcu-
late the TPSA of “CN2C(=O)N(C)C(=O)C1=C2N=CN1C”. The answer should be 61.82, which agrees
exactly with Ertl’s online TPSA tool but not with PubChem’s value of 58.4.

Open Babel’s command line cannot parse tables with custom formats. But the TPSA descriptor, defined by a table in
the file psa.txt, is already present and can be used as follows:

obabel -:CN2C(=O)N(C)C(=O)C1=C2N=CN1C -osmi --append TPSA

giving:

Cn1c(=O)n(C)c(=O)c2c1ncn2C 61.82
1 molecule converted

The table in tpsa.tab and Open Babel’s psa.txt have the same content but different formats. The first few rows
of tpsa.tab are:

psa SMARTS description
23.79 [N0;H0;D1;v3] N#
23.85 [N+0;H1;D1;v3] [NH]=
26.02 [N+0;H2;D1;v3] [NH2]-

and the equivalent lines from Open Babel’s psa.txt:

[N]#* 23.79
[NH]=* 23.85
[NH2]-* 26.02

It is possible to add new descriptors without having to recompile. If another property, myProp, could be calculated
using a table in myprop.txt with the same format as psa.txt, then a descriptor could set up by adding the
following item to plugindefines.txt:

OBGroupContrib
myProp # name of descriptor
myprop.txt # data file
Coolness index # brief description

The following would then output molecules in increasing order of myProp with the value added to the title:

obabel infile.smi -osmi --sort myProp+

6.12 Working with SD tag data

The input file is SD file from the benzodiazepine data set. Every record contains the
tags PUBCHEM_CACTVS_HBOND_DONOR, PUBCHEM_CACTVS_HBOND_ACCEPTOR and PUB-
CHEM_MOLECULAR_WEIGHT, and most of the records contain the tag PUBCHEM_XLOGP3.

The program must create a new SD file which is the same as the input file but with a new tag data field
named “RULE5”. This must be “1” if the record passes Lipinski’s rule, “0” if it does not, and “no logP”
if the PUBCHEM_XLOGP3 field is missing.

6.11. Calculate TPSA 47

Open Babel Documentation, Release 2.3.1

This exercise is a bit of a stretch for the Open Babel command-line. However, the individual lines may be instructional,
since they are more like the sort of task that would normally be attempted.

obabel benzodiazepine.sdf.gz -O out1.sdf --filter "PUBCHEM_CACTVS_HBOND_DONOR<=5 &
PUBCHEM_CACTVS_HBOND_ACCEPTOR<=10 & PUBCHEM_MOLECULAR_WEIGHT<=500 &
PUBCHEM_XLOGP3<=5"
--property "RULE5" "1"

obabel benzodiazepine.sdf.gz -O out2.sdf --filter "!PUBCHEM_XLOGP3"
--property "RULE5" "no logP"

obabel benzodiazepine.sdf.gz -O out3.sdf --filter "!PUBCHEM_XLOGP3 &
!(PUBCHEM_CACTVS_HBOND_DONOR<=5 & PUBCHEM_CACTVS_HBOND_ACCEPTOR<=10 &
PUBCHEM_MOLECULAR_WEIGHT<=500 & PUBCHEM_XLOGP3<=5)"
--property "RULE5" "0"

The first command converts only molecules passing Lipinski’s rule, putting them in out1.sdf, and adding an addi-
tional property, RULE5, with a value of 1.

The second command converts only molecules that do not have a property PUBCHEM_XLOGP3.

The third command converts only molecules that do have a PUBCHEM_XLOGP3 and which fail Lipinski’s rule.

Use cat or type at the command prompt to concatenate the three files out1.sdf, out2.sdf, out3.sdf.

These operations are slow because the chemistry of each molecule is fully converted. As illustrated below, the filtering
alone could have been done more quickly using the uncompressed file and the -aP option, which restricts the reading
of the SDF file to the title and properties only, and then copying the molecule’s SDF text verbatim with -o copy.
But adding the additional property is not then possible:

obabel benzodiazepine.sdf -o copy -O out1.sdf -aP --filter
"PUBCHEM_CACTVS_HBOND_DONOR<=5 & PUBCHEM_CACTVS_HBOND_ACCEPTOR<=10 &
PUBCHEM_MOLECULAR_WEIGHT<=500 & PUBCHEM_XLOGP3<=5"

6.13 Unattempted tasks

A number of the Chemical Toolkit Rosetta tasks cannot be attempted as the obabel tool does not (currently!) have the
necessary functionality. These include the following:

• Detect and report SMILES and SDF parsing errors

• Ring counts in a SMILES file

• Unique SMARTS matches against a SMILES string

• Find the graph diameter

• Break rotatable bonds and report the fragments

• Change stereochemistry of certain atoms in SMILES file

To handle these tasks, you need to use the Open Babel library directly. This is the subject of the next section.

48 Chapter 6. obabel vs Chemistry Toolkit Rosetta

Chapter 7
Write software using the Open Babel library

Behind the obabel command line program lies a complete cheminformatics toolkit, the Open Babel library. Using this
library, you can write your own custom scripts and software for yourself or others.

Note: Any software that uses the Open Babel library must abide by terms of the GNU Public License version 2. This
includes all of the supporting language bindings (for example, Python scripts) as well as C++ programs. To summarise,
if you are considering distributing your software to other people, you must make your source code available to them
on request.

Open Babel is a C++ library and can easily be used from C++. In addition it can be accessed from Python, Perl, Ruby,
CSharp and Java. These are referred to as language bindings (the Python bindings, etc.) and they were automatically
generated from the C++ library using SWIG. For Python we also provide a module (Pybel) that makes it easier to
access features of the bindings.

7.1 The Open Babel API

The API (Application Programming Interface) is the set of classes, methods and variables that a programming library
provides to the user. The Open Babel API is implemented in C++, but the same set of classes, methods and variables
are accessed through the various language bindings.

The API documentation is automatically generated from the source code using the Doxygen tool. The following links
point to the various versions of the documentation:

• API for the current release

• API for the development version (updated nightly, with error report showing errors in documentation)

• API for specific versions: 2.0, 2.1, 2.2, 2.3

The Open Babel toolkit uses a version numbering that indicates how the API has changed over time:

• Bug fix releases (e.g., 2.0.0, vs. 2.0.1) do not change API at all.

• Minor versions (e.g., 2.0 vs. 2.1) will add function calls, but will be otherwise backwards-compatible.

• Major versions (e.g. 2 vs 3) are not backwards-compatible, and have changes in the API.

Overall, our goal is for the Open Babel API to remain stable over as long a period as possible. This means that users
can be confident that their code will continue to work despite the release of new versions with additional features, file
formats and bug fixes. For example, at the time of writing we have been on the version 2 series for almost five years
(since November 2005). In other words, a program written using Open Babel almost five years ago still works with
the latest release.

49

http://www.gnu.org/licenses/gpl-2.0.html
http://swig.org
http://openbabel.org/api/
http://openbabel.org/dev-api/
http://openbabel.org/dev-api/docbuild.out
http://openbabel.org/api/2.0/
http://openbabel.org/api/2.1/
http://openbabel.org/api/2.2/
http://openbabel.org/api/2.3/

Open Babel Documentation, Release 2.3.1

7.2 C++

7.2.1 Quickstart example

Here’s an example C++ program that uses the Open Babel toolkit to convert between two chemical file formats:

#include <iostream>
#include <openbabel/obconversion.h>
using namespace std;

int main(int argc,char **argv)
{
if(argc<3)
{
cout << "Usage: ProgrameName InputFileName OutputFileName\n";
return 1;

}

ifstream ifs(argv[1]);
if(!ifs)
{
cout << "Cannot open input file\n";
return 1;

}
ofstream ofs(argv[2]);
if(!ofs)
{
cout << "Cannot open output file\n";
return 1;

}
OpenBabel::OBConversion conv(&ifs, &ofs);
if(!conv.SetInAndOutFormats("CML","MOL"))
{
cout << "Formats not available\n";
return 1;

}
int n = conv.Convert();
cout << n << " molecules converted\n";

return 0;
}

Next, we’ll look at how to compile this.

7.2.2 How to compile against the Open Babel library

Using Makefiles

The following Makefile can be used to compile the above example, assuming that it’s saved as example.cpp.
You need to have already installed Open Babel somewhere. If the include files or the library are not automatically
found when running make, you can specify the location as shown by the commented out statements in CFLAGS and
LDFLAGS below.

CC = g++
CFLAGS = -c # -I /home/user/Tools/openbabel/install/include/openbabel-2.0
LDFLAGS = -lopenbabel # -L /home/user/Tools/openbabel/install/lib

50 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

all: example

example: example.o
$(CC) $(LDFLAGS) example.o -o example

example.o: example.cpp
$(CC) $(CFLAGS) $(LDFLAGS) example.cpp

clean:
rm -rf example.o example

Using CMake

Rather than create a Makefile yourself, you can get CMake to do it for you. The nice thing about using CMake is that
it can generate not only Makefiles, but also project files for MSVC++, KDevelop and Eclipse (among others). The
following CMakeLists.txt can be used to generate any of these. The commented out lines can be used to specify
the location of the Open Babel library and include files if necessary.

cmake_minimum_required(VERSION 2.6)
add_executable(example example.cpp)
target_link_libraries(example openbabel)
target_link_libraries(example /home/user/Tools/openbabel/install/lib/libopenbabel.so)
include_directories(/home/user/Tools/openbabel/install/include/openbabel-2.0)

7.2.3 Further examples

Output Molecular Weight for a Multi-Molecule SDF File

Let’s say we want to print out the molecular weights of every molecule in an SD file. Why? Well, we might want
to plot a histogram of the distribution, or see whether the average of the distribution is significantly different (in the
statistical sense) compared to another SD file.

#include <iostream>

#include <openbabel/obconversion.h>
#include <openbabel/mol.h>

int main(int argc,char **argv)
{
OBConversion obconversion;
obconversion.SetInFormat("sdf");
OBMol mol;

bool notatend = obconversion.ReadFile(&mol,"../xsaa.sdf");
while (notatend)
{
std::cout << "Molecular Weight: " << mol.GetMolWt() << std::endl;

mol.Clear();
notatend = obconversion.Read(&mol);

}

return(0);
}

7.2. C++ 51

Open Babel Documentation, Release 2.3.1

Properties from SMARTS Matches

Let’s say that we want to get the average bond length or dihedral angle over particular types of atoms in a large
molecule. So we’ll use SMARTS to match a set of atoms and loop through the matches. The following example
does this for sulfur-carbon-carbon-sulfur dihedral angles in a polymer and the carbon-carbon bond lengths between
the monomer units:

OBMol obMol;
OBBond *b1;
OBConversion obConversion;
OBFormat *inFormat;
OBSmartsPattern smarts;
smarts.Init("[#16D2r5][#6D3r5][#6D3r5][#16D2r5]");

string filename;
vector< vector <int> > maplist;
vector< vector <int> >::iterator matches;
double dihedral, bondLength;

for (int i = 1; i < argc; i++)
{
obMol.Clear();
filename = argv[i];
inFormat = obConversion.FormatFromExt(filename.c_str());
obConversion.SetInFormat(inFormat);
obConversion.ReadFile(&obMol, filename);

if (smarts.Match(obMol))
{
dihedral = 0.0;
bondLength = 0.0;
maplist = smarts.GetUMapList();
for (matches = maplist.begin(); matches != maplist.end(); matches++)
{
dihedral += fabs(obMol.GetTorsion((*matches)[0],

(*matches)[1],
(*matches)[2],
(*matches)[3]));

b1 = obMol.GetBond((*matches)[1], (*matches)[2]);
bondLength += b1->GetLength();

}
cout << filename << ": Average Dihedral " << dihedral / maplist.size()

<< " Average Bond Length " << bondLength / maplist.size()
<< " over " << maplist.size() << " matches\n";

}
}

7.3 Python

7.3.1 Introduction

The Python interface to Open Babel is perhaps the most popular of the several languages that Open Babel supports.
We provide two Python modules that can be used to access the functionality of Open Babel toolkit:

1. The openbabel module:

52 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

This contains the standard Python bindings automatically generated using SWIG from the C++ API.
See The openbabel module.

2. The Pybel module:

This is a light-weight wrapper around the classes and methods in the openbabel module. Pybel
provides more convenient and Pythonic ways to access the Open Babel toolkit. See Pybel.

You don’t have to choose between them though - they can be used together.

7.3.2 Install Python bindings

Windows

Install the bindings

1. First you need to download and install the OpenBabelGUI version 2.3.1

2. Next, download and install the OpenBabel Python bindings (version 1.7) for your Python version, either 2.5 2.6,
2.7 3.1, or 3.2.

Note: If you are upgrading from an earlier version of the Python bindings, you should uninstall that first (using
Add/Remove Programs) and then follow steps 1 and 2 above. You should also make sure that BABEL_DATADIR is set
correctly to the data folder of the Open Babel installation (at a command prompt, type echo %BABEL_DATADIR%).
If not, carefully delete any existing System environment variables with the name BABEL_DATADIR, and correct the
value of the User environment variable BABEL_DATADIR (if necessary).

Install Python Imaging Library (optional)

If you want to display 2D depictions using Pybel (rather than just write to a file), you need the Python Imaging Library
(PIL) by Fredrik Lundh. Unfortunately, at the time of writing (Oct 2011), there is still not an official release for Python
3.

Test the installation

Open a Windows command prompt, and type the following commands to make sure that everything is installed okay.
If you get an error message, there’s something wrong and you should email the mailing list with the output from these
commands.

C:\Documents and Settings\Noel> obabel -V
Open Babel 2.3.1 -- Oct 9 2011 -- 17:57:01

C:\Documents and Settings\Noel> obabel -Hsdf
sdf MDL MOL format
Reads and writes V2000 and V3000 versions

Read Options, e.g. -as
s determine chirality from atom parity flags
...
...

C:\Documents and Settings\Noel> dir "%BABEL_DATADIR%"\mr.txt
Volume in drive C has no label.
Volume Serial Number is 68A3-3CC9

7.3. Python 53

http://openbabel.org/wiki/Install
http://sourceforge.net/projects/openbabel/files/openbabel-python/1.7/openbabel-python-1.7.py25.exe/download
http://sourceforge.net/projects/openbabel/files/openbabel-python/1.7/openbabel-python-1.7.py26.exe/download
http://sourceforge.net/projects/openbabel/files/openbabel-python/1.7/openbabel-python-1.7.py27.exe/download
http://sourceforge.net/projects/openbabel/files/openbabel-python/1.7/openbabel-python-1.7.py31.exe/download
http://sourceforge.net/projects/openbabel/files/openbabel-python/1.7/openbabel-python-1.7.py32.exe/download
http://www.pythonware.com/products/pil/#pil117
http://www.pythonware.com/products/pil/#pil117

Open Babel Documentation, Release 2.3.1

Directory of C:\ProgramData\OpenBabel-2.3.1\data

26/10/2010 16:37 4,295 mr.txt
1 File(s) 4,295 bytes
0 Dir(s) 58,607,575,040 bytes free

C:\Documents and Settings\Noel> C:\Python26\python
Python 2.6.5 (r265:79096, Mar 19 2010, 21:48:26) [MSC v.1500 32 bit (Intel)] on
win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import pybel
>>> mol = pybel.readstring("smi", "CC(=O)Br")
>>> mol.make3D()
>>> print(mol.write("sdf"))

OpenBabel01010918183D

7 6 0 0 0 0 0 0 0 0999 V2000
1.0166 -0.0354 -0.0062 C 0 0 0 0 0
2.5200 -0.1269 0.0003 C 0 0 0 0 0
3.0871 -1.2168 0.0026 O 0 0 0 0 0
3.2979 1.4258 0.0015 Br 0 0 0 0 0
0.6684 1.0007 0.0052 H 0 0 0 0 0
0.6255 -0.5416 0.8803 H 0 0 0 0 0
0.6345 -0.5199 -0.9086 H 0 0 0 0 0

1 2 1 0 0 0
1 5 1 0 0 0
1 6 1 0 0 0
1 7 1 0 0 0
2 4 1 0 0 0
2 3 2 0 0 0

M END
$$$$
>>> mol.draw() # If you installed PIL, this will display its structure
>>> (Hit CTRL+Z followed by Enter to exit)

Linux and MacOSX

See Compile language bindings for information on how to configure CMake to compile the Python bindings. This can
be done either globally or locally.

You may need to add the location of libopenbabel.so (on my system, the location is /usr/local/lib) to
the environment variable LD_LIBRARY_PATH if you get the following error when you try to import the OpenBabel
library at the Python prompt:

$ python
>>> import openbabel
Traceback (most recent call last):
File "<stdin>", line 1, in
File "/usr/lib/python2.4/site-packages/openbabel.py", line 9, in
import _openbabel

ImportError: libopenbabel.so.3: cannot open shared object file: No such file or directory

54 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

Install Python Imaging Library (optional)

If you want to display 2D depictions using Pybel (rather than just write to a file), you need the Python Imaging Library
(PIL) by Fredrik Lundh, and the Python Tkinter library (part of the standard library). These should be available
through your package manager, e.g. on Debian, PIL is provided by ‘python-imaging’ and ‘python-imaging-tk’, while
Tkinter is provided by ‘python-tk’. Unfortunately, at the time of writing (Oct 2011), there is still not an official release
of PIL for Python 3.

7.3.3 The openbabel module

The openbabel module provides direct access to the C++ Open Babel library from Python. This binding is generated
using the SWIG package and provides access to almost all of the Open Babel interfaces via Python, including the base
classes OBMol, OBAtom, OBBond, and OBResidue, as well as the conversion framework OBConversion. As such,
essentially any call in the C++ API is available to Python scripts with very little difference in syntax. As a result, the
principal documentation is the C++ API documentation.

Examples

Here we give some examples of common Python syntax for the openbabel module and pointers to the appropriate
sections of the API documentation.

The example script below creates atoms and bonds one-by-one using the OBMol, OBAtom, and OBBond classes.

import openbabel

mol = openbabel.OBMol()
print ’Should print 0 (atoms)’
print mol.NumAtoms()

a = mol.NewAtom()
a.SetAtomicNum(6) # carbon atom
a.SetVector(0.0, 1.0, 2.0) # coordinates

b = mol.NewAtom()
mol.AddBond(1, 2, 1) # atoms indexed from 1
print ’Should print 2 (atoms)’
print mol.NumAtoms()
print ’Should print 1 (bond)’
print mol.NumBonds()

mol.Clear();

More commonly, Open Babel can be used to read in molecules using the OBConversion framework. The following
script reads in molecular information (a SMI file) from a string, adds hydrogens, and writes out an MDL file as a
string.

import openbabel

obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("smi", "mdl")

mol = openbabel.OBMol()
obConversion.ReadString(mol, "C1=CC=CS1")

print ’Should print 5 (atoms)’
print mol.NumAtoms()

7.3. Python 55

http://www.pythonware.com/products/pil/#pil117
http://www.pythonware.com/products/pil/#pil117
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBBond.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBConversion.shtml

Open Babel Documentation, Release 2.3.1

mol.AddHydrogens()
print ’Should print 9 (atoms) after adding hydrogens’
print mol.NumAtoms()

outMDL = obConversion.WriteString(mol)

The following script writes out a file using a filename, rather than reading and writing to a Python string.

import openbabel

obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("pdb", "mol2")

mol = openbabel.OBMol()
obConversion.ReadFile(mol, "1ABC.pdb.gz") # Open Babel will uncompress automatically

mol.AddHydrogens()

print mol.NumAtoms()
print mol.NumBonds()
print mol.NumResidues()

obConversion.WriteFile(mol, ’1abc.mol2’)

Using iterators

A number of Open Babel toolkit classes provide iterators over various objects; these classes are identifiable by the
suffix “Iter” in the list of toolkit classes in the API:

• OBAtomAtomIter and OBAtomBondIter - given an OBAtom, iterate over all neighboring OBAtoms or OB-
Bonds

• OBMolAtomIter, OBMolBondIter, OBMolAngleIter, OBMolTorsionIter, OBMolRingIter - given an OBMol,
iterate over all OBAtoms, OBBonds, OBAngles, OBTorsions or OBRings.

• OBMolAtomBFSIter - given an OBMol and the index of an atom, OBMolAtomBFSIter iterates over all the
neighbouring atoms in a breadth-first manner. It differs from the other iterators in that it returns two values - an
OBAtom, and the ‘depth’ of the OBAtom in the breadth-first search (this is useful, for example, when creating
circular fingerprints)

• OBMolPairIter - given an OBMol, iterate over all pairs of OBAtoms separated by more than three bonds

• OBResidueIter - given an OBMol representing a protein, iterate over all OBResidues

• OBResidueAtomIter - given an OBResidue, iterate over all OBAtoms

These iterator classes can be used using the typical Python syntax for iterators:

for obatom in openbabel.OBMolAtomIter(obmol):
print obatom.GetAtomicMass()

Note that OBMolTorsionIter returns atom IDs which are off by one. That is, you need to add one to each ID to
get the correct ID. Also, if you add or remove atoms, you will need to delete the existing TorsionData before using
OBMolTorsionIter. This is done as follows:

mol.DeleteData(openbabel.TorsionData)

56 Chapter 7. Write software using the Open Babel library

http://openbabel.sourceforge.net/api/current/annotated.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBAtomAtomIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBAtomBondIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolAtomIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolBondIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolAngleIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolTorsionIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolRingIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolAtomBFSIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBMolPairIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBResidueIter.shtml
http://openbabel.sourceforge.net/api/current/classOpenBabel_1_1OBResidueAtomIter.shtml

Open Babel Documentation, Release 2.3.1

Calling a method requiring an array of C doubles

Some Open Babel toolkit methods, for example OBMol::Rotate(), require an array of doubles. It’s not possible to
directly use a list of floats when calling such a function from Python. Instead, you need to first explicitly create a C
array using the double_array() function:

obMol.Rotate([1.0, -54.7, 3])
Error!
myarray = openbabel.double_array([1.0, -54.7, 3])
obMol.Rotate(myarray)
Works!

Accessing OBPairData, OBUnitCell and other OBGenericData

If you want to access any subclass of OBGenericData (such as OBPairData or OBUnitCell) associated with a molecule,
you need to ‘cast’ the OBGenericData returned by OBMol.GetData() using the toPairData(), toUnitCell() (etc.) func-
tions:

pairdata = [openbabel.toPairData(x) for x in obMol.GetData()
if x.GetDataType()==openbabel.PairData]

print pairdata[0].GetAttribute(), pairdata[0].GetValue()

unitcell = openbabel.toUnitCell(obMol.GetData(openbabel.UnitCell))
print unitcell.GetAlpha(), unitcell.GetSpaceGroup()

Using FastSearch from Python

Rather than use the FastSearch class directly, it’s easiest to use the OpenInAndOutFiles() method as follows:

>>> import openbabel
>>> conv=openbabel.OBConversion()
>>> conv.OpenInAndOutFiles("1200mols.smi","index.fs")
True
>>> conv.SetInAndOutFormats("smi","fs")
True
>>> conv.Convert()
This will prepare an index of 1200mols.smi and may take some time...
It took 6 seconds
1192
>>> conv.CloseOutFile()
>>> conv.OpenInAndOutFiles("index.fs","results.smi")
True
>>> conv.SetInAndOutFormats("fs","smi")
True
>>> conv.AddOption("s",conv.GENOPTIONS,"C=CC#N")
>>> conv.Convert()
10 candidates from fingerprint search phase
1202
>>> f=open("results.smi")
>>> f.read()
’OC(=O)C(=Cc1ccccc1)C#N\t298\nN#CC(=Cc1ccccc1)C#N\t490\nO=N(=O)c1cc(ccc1)C=C(C#N
)C#N\t491\nClc1ccc(cc1)C=C(C#N)C#N\t492\nClc1ccc(c(c1)Cl)C=C(C#N)C#N\t493\nClc1c
cc(cc1Cl)C=C(C#N)C#N\t494\nBrc1ccc(cc1)C=C(C#N)C#N\t532\nClc1ccccc1C=C(C#N)C#N\t
542\nN#CC(=CC=Cc1occc1)C#N\t548\nCCOC(=O)C(C#N)=C(C)C\t1074\n’

7.3. Python 57

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ae330819c26c418de3a2c995fd191807b
http://openbabel.org/dev-api/classOpenBabel_1_1OBPairData.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBUnitCell.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBGenericData.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBBase.shtml#aee672d91b694547fb072fdaa8e03cfe9
http://openbabel.org/dev-api/classOpenBabel_1_1FastSearch.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBConversion.shtml#a7424c6fe9292f59087d23e7748ac237e

Open Babel Documentation, Release 2.3.1

Combining numpy with Open Babel

If you are using the Python numerical extension, numpy, and you try to pass values from a numpy array to Open Babel,
it may not work unless you convert the values to Python built-in types first:

import numpy, openbabel
mol = openbabel.OBMol()
atom = mol.NewAtom()

coord = numpy.array([1.2, 2.3, 4.6], "float32")
atom.SetVector(coord[0], coord[1], coord[2])
Error

atom.SetVector(float(coord[0]), float(coord[1]), float(coord[2]))
No error

coord = numpy.array([1.2, 2.3, 4.6], "float64")
atom.SetVector(coord[0], coord[1], coord[2])
No error either - not all numpy arrays will cause an error

7.3.4 Pybel

Pybel provides convenience functions and classes that make it simpler to use the Open Babel libraries from Python,
especially for file input/output and for accessing the attributes of atoms and molecules. The Atom and Molecule
classes used by Pybel can be converted to and from the OBAtom and OBMol used by the openbabel module.
These features are discussed in more detail below.

The rationale and technical details behind Pybel are described in O’Boyle et al [omh2008]. To support further devel-
opment of Pybel, please cite this paper if you use Pybel to obtain results for publication.

Information on the Pybel API can be found at the interactive Python prompt using the help() function. The full API
is also listed in the next section (see Pybel API).

To use Pybel, use import pybel or from pybel import *.

Atoms and Molecules

A Molecule can be created in any of three ways:

1. From an OBMol, using Molecule(myOBMol)

2. By reading from a file (see Input/Output below)

3. By reading from a string (see Input/Output below)

An Atom be created in two different ways:

1. From an OBAtom, using Atom(myOBAtom)

2. By accessing the atoms attribute of a Molecule

Using Pybel with openbabel.py

It is always possible to access the OBMol or OBAtom on which a Molecule or Atom is based, by accessing the
appropriate attribute, either .OBMol or .OBAtom. In this way, it is easy to combine the convenience of pybel
with the many additional capabilities present in openbabel. See Combining Pybel with openbabel.py below.

58 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml

Open Babel Documentation, Release 2.3.1

Molecules have the following attributes: atoms, charge, data, dim, energy, exactmass, formula, molwt,
spin, sssr, title and unitcell (if crystal data). The atoms attribute provides a list of the Atoms in a
Molecule. The data attribute returns a dictionary-like object for accessing and editing the data fields associated
with the molecule (technically, it’s a MoleculeData object, but you can use it like it’s a regular dictionary). The
unitcell attribute gives access to any unit cell data associated with the molecule (see OBUnitCell). The remaining
attributes correspond directly to attributes of OBMols: e.g. formula is equivalent to OBMol::GetFormula(). For
more information on what these attributes are, please see the Open Babel C++ documentation for OBMol.

For example, let’s suppose we have an SD file containing descriptor values in the data fields:

>>> mol = readfile("sdf", "calculatedprops.sdf").next() # (readfile is described below)
>>> print mol.molwt
100.1
>>> print len(mol.atoms)
16
>>> print mol.data.keys()
{’Comment’: ’Created by CDK’, ’NSC’: 1, ’Hydrogen Bond Donors’: 3,
’Surface Area’: 342.43, }
>>> print mol.data[’Hydrogen Bond Donors’]
3
>>> mol.data[’Random Value’] = random.randint(0,1000) # Add a descriptor containing noise

Molecules have a write() method that writes a representation of a Molecule to a file or to a string. See Input/Output
below. They also have a calcfp() method that calculates a molecular fingerprint. See Fingerprints below.

The draw() method of a Molecule generates 2D coordinates and a 2D depiction of a molecule. It uses the OASA
library by Beda Kosata to do this. The default options are to show the image on the screen (show=True), not
to write to a file (filename=None), to calculate 2D coordinates (usecoords=False) but not to store them
(update=False).

The addh() and removeh() methods allow hydrogens to be added and removed.

If a molecule does not have 3D coordinates, they can be generated using the make3D() method. By default, this
includes 50 steps of a geometry optimisation using the MMFF94 forcefield. The list of available forcefields is stored
in the forcefields variable. To further optimise the structure, you can use the localopt() method, which by
default carries out 500 steps of an optimisation using MMFF94. Note that hydrogens need to be added before calling
localopt().

The calcdesc() method of a Molecule returns a dictionary containing descriptor values for LogP, Polar Surface
Area (“TPSA”) and Molar Refractivity (“MR”). A list of the available descriptors is contained in the variable descs.

If only one or two descriptor values are required, you can specify the names as follows: calcdesc(["LogP",
"TPSA"]). Since the data attribute of a Molecule is also a dictionary, you can easily add the result of calcdesc()
to an SD file (for example) as follows:

mol = readfile("sdf", "without_desc.sdf").next()
descvalues = mol.calcdesc()
In Python, the update method of a dictionary allows you
to add the contents of one dictionary to another
mol.data.update(descvalues)
output = Outputfile("sdf", "with_desc.sdf")
output.write(mol)
output.close()

For convenience, a Molecule provides an iterator over its Atoms. This is used as follows:

for atom in myMolecule:
do something with atom

7.3. Python 59

http://openbabel.org/dev-api/classOpenBabel_1_1OBUnitCell.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#a7adc12bff502264eaebf537a5e28a43c
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml
http://bkchem.zirael.org/oasa_en.html
http://bkchem.zirael.org/oasa_en.html

Open Babel Documentation, Release 2.3.1

Atoms have the following attributes: atomicmass, atomicnum, coords, exactmass, formalcharge,
heavyvalence, heterovalence, hyb, idx, implicitvalence, isotope, partialcharge, spin,
type, valence, vector. The .coords attribute provides a tuple (x, y, z) of the atom’s coordinates. The remain-
ing attributes are as for the Get methods of OBAtom.

Input/Output

One of the strengths of Open Babel is the number of chemical file formats that it can handle (see Supported File
Formats and Options). Pybel provides a dictionary of the input and output formats in the variables informats and
outformats where the keys are the three-letter codes for each format (e.g. pdb) and the values are the descriptions
(e.g. Protein Data Bank format).

Pybel greatly simplifies the process of reading and writing molecules to and from strings or files. There are two
functions for reading Molecules:

1. readstring() reads a Molecule from a string

2. readfile() provides an iterator over the Molecules in a file

Here are some examples of their use. Note in particular the use of .next() to access the first (and possibly only)
molecule in a file:

>>> mymol = readstring("smi", "CCCC")
>>> print mymol.molwt
58
>>> for mymol in readfile("sdf", "largeSDfile.sdf")
... print mymol.molwt
>>> singlemol = readfile("pdb", "1CRN.pdb").next()

If a single molecule is to be written to a molecule or string, the write() method of the Molecule should be used:

1. mymol.write(format) returns a string

2. mymol.write(format, filename) writes the Molecule to a file. An optional additional parameter,
overwrite, should be set to True if you wish to overwrite an existing file.

For files containing multiple molecules, the Outputfile class should be used instead. This is initialised with a
format and filename (and optional overwrite parameter). To write a Molecule to the file, the write() method
of the Outputfile is called with the Molecule as a parameter. When all molecules have been written, the close()
method of the Outputfile should be called.

Here are some examples of output using the Pybel methods and classes:

>>> print mymol.write("smi")
’CCCC’
>>> mymol.write("smi", "outputfile.txt")
>>> largeSDfile = Outputfile("sdf", "multipleSD.sdf")
>>> largeSDfile.write(mymol)
>>> largeSDfile.write(myothermol)
>>> largeSDfile.close()

Fingerprints

A Fingerprint can be created in either of two ways:

1. From a vector returned by the OpenBabel GetFingerprint() method, using Fingerprint(myvector)

2. By calling the calcfp() method of a Molecule

60 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml

Open Babel Documentation, Release 2.3.1

The calcfp() method takes an optional argument, fptype, which should be one of the fingerprint types supported
by OpenBabel (see Molecular fingerprints and similarity searching). The list of supported fingerprints is stored in the
variable fps. If unspecified, the default fingerprint (FP2) is calculated.

Once created, the Fingerprint has two attributes: fp gives the original OpenBabel vector corresponding to the finger-
print, and bits gives a list of the bits that are set.

The Tanimoto coefficient of two Fingerprints can be calculated using the | operator.

Here is an example of its use:

>>> import pybel
>>> smiles = [’CCCC’, ’CCCN’]
>>> mols = [pybel.readstring("smi", x) for x in smiles] # Create a list of two molecules
>>> fps = [x.calcfp() for x in mols] # Calculate their fingerprints
>>> print fps[0].bits, fps[1].bits
[261, 385, 671] [83, 261, 349, 671, 907]
>>> print fps[0] | fps[1] # Print the Tanimoto coefficient
0.3333

SMARTS matching

Pybel also provides a simplified API to the Open Babel SMARTS pattern matcher. A Smarts object is created, and
the findall() method is then used to return a list of the matches to a given Molecule.

Here is an example of its use:

>>> mol = readstring("smi","CCN(CC)CC") # triethylamine
>>> smarts = Smarts("[#6][#6]") # Matches an ethyl group
>>> print smarts.findall(mol)
[(1, 2), (4, 5), (6, 7)]

Combining Pybel with openbabel.py

It is easy to combine the ease of use of Pybel with the comprehensive coverage of the Open Babel toolkit that
openbabel.py provides. Pybel is really a wrapper around openbabel.py, with the result that the OBAtom
and OBMol used by openbabel.py can be interconverted to the Atom and Molecule used by Pybel.

The following example shows how to read a molecule from a PDB file using Pybel, and then how to use
openbabel.py to add hydrogens. It also illustrates how to find out information on what methods and classes
are available, while at the interactive Python prompt.

>>> import pybel
>>> mol = pybel.readfile("pdb", "1PYB").next()
>>> help(mol)
Help on Molecule in module pybel object:
...
| Attributes:
| atoms, charge, dim, energy, exactmass, flags, formula,
| mod, molwt, spin, sssr, title.
...
| The original Open Babel molecule can be accessed using the attribute:
| OBMol
...
>>> print len(mol.atoms), mol.molwt
3430 49315.2
>>> dir(mol.OBMol) # Show the list of methods provided by openbabel.py
[’AddAtom’, ’AddBond’, ’AddConformer’, ’AddHydrogens’, ’AddPolarHydrogens’, ...]

7.3. Python 61

Open Babel Documentation, Release 2.3.1

>>> mol.OBMol.AddHydrogens()
>>> print len(mol.atoms), mol.molwt
7244 49406.0

The next example is an extension of one of the openbabel.py examples at the top of this page. It shows how a
molecule could be created using openbabel.py, and then written to a file using Pybel:

import openbabel, pybel

mol = openbabel.OBMol()
a = mol.NewAtom()
a.SetAtomicNum(6) # carbon atom
a.SetVector(0.0, 1.0, 2.0) # coordinates
b = mol.NewAtom()
mol.AddBond(1, 2, 1) # atoms indexed from 1

pybelmol = pybel.Molecule(mol)
pybelmol.write("sdf", "outputfile.sdf")

7.3.5 Pybel API

pybel - A Python module that simplifies access to the Open Babel API

Global variables: informats, outformats, descs, fps, forcefields, operations

Functions: readfile(), readstring()

Classes: Atom, Molecule, Outputfile, Fingerprint, Smarts, MoleculeData

Note: The openbabel.py module can be accessed through the ob global variable.

class pybel.Atom(OBAtom)
Represent an atom.

Required parameter: OBAtom – an Open Babel OBAtom

Attributes: atomicmass, atomicnum, coords, exactmass, formalcharge, heavyvalence,
heterovalence, hyb, idx, implicitvalence, isotope, partialcharge, spin, type,
valence, vector.

The underlying Open Babel OBAtom can be accessed using the attribute:

OBAtom

atomicmass
Atomic mass

atomicnum
Atomic number

coords
Coordinates of the atom

exactmass
Exact mass

formalcharge
Formal charge

62 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml

Open Babel Documentation, Release 2.3.1

heavyvalence
Number of non-hydrogen atoms attached

heterovalence
Number of heteroatoms attached

hyb
The hybridization of this atom: 1 for sp, 2 for sp2, 3 for sp3, ...

For further details see OBAtom::GetHyb()

idx
The index of the atom in the molecule (starts at 1)

implicitvalence
The maximum number of connections expected for this molecule

isotope
The isotope for this atom if specified; 0 otherwise.

partialcharge
Partial charge

spin
Spin multiplicity

type
Atom type

valence
Number of explicit connections

vector
Coordinates as a vector3 object.

class pybel.Fingerprint(fingerprint)
A molecular fingerprint.

Required parameters: fingerprint – a vector calculated by OBFingerprint::FindFingerprint()

Attributes: bits

Methods: The | operator can be used to calculate the Tanimoto coefficient. For example, given two Finger-
prints a and b, the Tanimoto coefficient is given by:

tanimoto = a | b

The underlying fingerprint object can be accessed using the attribute fp.

bits
A list of bits set in the fingerprint

class pybel.Molecule(OBMol)
Represent a Pybel Molecule.

Required parameter: OBMol – an Open Babel OBMol or any type of Cinfony Molecule

Attributes: atoms, charge, conformers, data, dim, energy, exactmass, formula, molwt,
spin, sssr, title, unitcell.

Methods: addh(), calcfp(), calcdesc(), draw(), localopt(), make3D(), removeh(),
write()

The underlying Open Babel OBMol can be accessed using the attribute: OBMol

7.3. Python 63

http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml#a4f510d8274d4d2a835c7c438aa794e57
http://openbabel.org/dev-api/classOpenBabel_1_1vector3.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBFingerprint.shtml#a3f95fb7efe843a55b087edd16fbe4012
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml

Open Babel Documentation, Release 2.3.1

An iterator (__iter__()) is provided that iterates over the atoms of the molecule. This allows constructions
such as the following:

for atom in mymol:
print atom

addh()
Add hydrogens.

atoms
A list of atoms of the molecule

calcdesc(descnames=[])
Calculate descriptor values.

Optional parameter:

descnames – a list of names of descriptors See the descs variable for a list of available descrip-
tors.

If descnames is not specified, all available descriptors are calculated.

calcfp(fptype=’FP2’)
Calculate a molecular fingerprint.

Optional parameters:

fptype – the fingerprint type (default is FP2). See the fps variable for a list of of available finger-
print types.

charge
The charge on the molecule

conformers
Conformers of the molecule

data
Access the molecule’s data through a dictionary-like object, MoleculeData.

dim
Are the coordinates 2D, 3D or 0D?

draw(show=True, filename=None, update=False, usecoords=False)
Create a 2D depiction of the molecule.

Optional parameters:

show – display on screen (default is True)

filename – write to file (default is None)

update – update the coordinates of the atoms This sets the atom coordinates to those deter-
mined by the structure diagram generator (default is False)

usecoords – use the current coordinates This causes the current coordinates to be used instead
of calculating new 2D coordinates (default is False)

OASA is used for 2D coordinate generation and depiction. Tkinter and Python Imaging Library are re-
quired for image display.

energy
The molecule’s energy

exactmass
The exact mass

64 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

formula
The molecular formula

localopt(forcefield=’mmff94’, steps=500)
Locally optimize the coordinates.

Optional parameters:

forcefield – default is mmff94. See the forcefields variable for a list of available forcefields.

steps – default is 500

If the molecule does not have any coordinates, make3D() is called before the optimization. Note that the
molecule needs to have explicit hydrogens. If not, call addh().

make3D(forcefield=’mmff94’, steps=50)
Generate 3D coordinates.

Optional parameters:

forcefield – default is mmff94. See the forcefields variable for a list of available forcefields.

steps – default is 50

Once coordinates are generated, hydrogens are added and a quick local optimization is carried out with 50
steps and the MMFF94 forcefield. Call localopt() if you want to improve the coordinates further.

molwt
The molecular weight

removeh()
Remove hydrogens.

spin
The spin multiplicity

sssr
The Smallest Set of Smallest Rings (SSSR)

title
The molecule title

unitcell
Access any unit cell data

write(format=’smi’, filename=None, overwrite=False)
Write the molecule to a file or return a string.

Optional parameters:

format – chemical file format See the outformats variable for a list of available output formats
(default is smi)

filename – default is None

overwrite – overwrite the output file if it already exists? Default is False.

If a filename is specified, the result is written to a file. Otherwise, a string is returned containing the result.

To write multiple molecules to the same file you should use the Outputfile class.

class pybel.MoleculeData(obmol)
Store molecule data in a dictionary-type object

Required parameters: obmol – an Open Babel OBMol

7.3. Python 65

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml

Open Babel Documentation, Release 2.3.1

Methods and accessor methods are like those of a dictionary except that the data is retrieved on-the-fly from the
underlying OBMol.

Example:

>>> mol = readfile("sdf", ’head.sdf’).next()
>>> data = mol.data
>>> print data
{’Comment’: ’CORINA 2.61 0041 25.10.2001’, ’NSC’: ’1’}
>>> print len(data), data.keys(), data.has_key("NSC")
2 [’Comment’, ’NSC’] True
>>> print data[’Comment’]
CORINA 2.61 0041 25.10.2001
>>> data[’Comment’] = ’This is a new comment’
>>> for k,v in data.iteritems():
... print k, "-->", v
Comment --> This is a new comment
NSC --> 1
>>> del data[’NSC’]
>>> print len(data), data.keys(), data.has_key("NSC")
1 [’Comment’] False

clear()

has_key(key)

items()

iteritems()

keys()

update(dictionary)

values()

class pybel.Outputfile(format, filename, overwrite=False)
Represent a file to which output is to be sent.

Although it’s possible to write a single molecule to a file by calling the write() method of a Molecule, if
multiple molecules are to be written to the same file you should use the Outputfile class.

Required parameters:

format – chemical file format See the outformats variable for a list of available output formats

filename

Optional parameters:

overwrite – overwrite the output file if it already exists? Default is False

Methods: write(), close()

close()
Close the output file to further writing.

write(molecule)
Write a molecule to the output file.

Required parameters: molecule – A Molecule

class pybel.Smarts(smartspattern)
A Smarts Pattern Matcher

Required parameters: smartspattern - A SMARTS pattern

66 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml

Open Babel Documentation, Release 2.3.1

Methods: findall()

Example:

>>> mol = readstring("smi","CCN(CC)CC") # triethylamine
>>> smarts = Smarts("[#6][#6]") # Matches an ethyl group
>>> print smarts.findall(mol)
[(1, 2), (4, 5), (6, 7)]

The numbers returned are the indices (starting from 1) of the atoms that match the SMARTS pattern. In this
case, there are three matches for each of the three ethyl groups in the molecule.

findall(molecule)
Find all matches of the SMARTS pattern to a particular molecule.

Required parameters: molecule - A Molecule

pybel.descs
A list of supported descriptors

pybel.forcefields
A list of supported forcefields

pybel.fps
A list of supported fingerprint types

pybel.informats
A dictionary of supported input formats

pybel.operations
A list of supported operations

pybel.outformats
A dictionary of supported output formats

pybel.readfile(format, filename)
Iterate over the molecules in a file.

Required parameters:

format – chemical file format See the informats variable for a list of available input formats

filename

You can access the first molecule in a file using the next() method of the iterator:

mol = readfile("smi", "myfile.smi").next()

You can make a list of the molecules in a file using:

mols = list(readfile("smi", "myfile.smi"))

You can iterate over the molecules in a file as shown in the following code snippet:

>>> atomtotal = 0
>>> for mol in readfile("sdf", "head.sdf"):
... atomtotal += len(mol.atoms)
...
>>> print atomtotal
43

pybel.readstring(format, string)
Read in a molecule from a string.

Required parameters:

7.3. Python 67

Open Babel Documentation, Release 2.3.1

format – chemical file format See the informats variable for a list of available input formats

string

Example:

>>> input = "C1=CC=CS1"
>>> mymol = readstring("smi", input)
>>> len(mymol.atoms)
5

7.3.6 Examples

Output Molecular Weight for a Multi-Molecule SDF File

Let’s say we want to print out the molecular weights of every molecule in an SD file. Why? Well, we might want
to plot a histogram of the distribution, or see whether the average of the distribution is significantly different (in the
statistical sense) compared to another SD file.

openbabel.py

from openbabel import *

obconversion = OBConversion()
obconversion.SetInFormat("sdf")
obmol = OBMol()

notatend = obconversion.ReadFile(obmol,"../xsaa.sdf")
while notatend:

print obmol.GetMolWt()
obmol = OBMol()
notatend = obconversion.Read(obmol)

Pybel

from pybel import *

for molecule in readfile("sdf","../xsaa.sdf"):
print molecule.molwt

Find information on all of the atoms and bonds connected to a particular atom

First of all, look at all of the classes in the Open Babel API that end with “Iter”. You should use these whenever you
need to do something like iterate over all of the atoms or bonds connected to a particular atom, iterate over all the
atoms in a molecule, iterate over all of the residues in a protein, and so on.

As an example, let’s say we want to find information on all of the bond orders and atoms connected to a particular
OBAtom called ‘obatom’. The idea is that we iterate over the neighbouring atoms using OBAtomAtomIter, and then
find the bond between the neighbouring atom and ‘obatom’. Alternatively, we could have iterated over the bonds
(OBAtomBondIter), but we would need to look at the indices of the two atoms at the ends of the bond to find out
which is the neighbouring atom:

68 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

for neighbour_atom in openbabel.OBAtomAtomIter(obatom):
print neighbour_atom.GetAtomicNum()
bond = obatom.GetBond(neighbour_atom)
print bond.GetBondOrder()

Examples from around the web

• Noel O’Blog - Hack that SD file, Just How Unique are your Molecules Part I and Part II, Calculate circular
fingerprints with Pybel, Molecular Graph-ics with Pybel, and Generating InChI’s Mini-Me, the InChIKey.

• Filter erroneous structures from the ZINC database

• Quantum Pharmaceuticals - Investigation of datasets for hERG binding

• cclib - Given the coordinates, charge, and multiplicity, how to create the corresponding OBMol

• Florian Nigsch wrote an implementation of Murcko fragments using Pybel

• Andrew Dalke’s Chemical Toolkit Rosetta contains several examples of Python code using openbabel.py and
pybel

Split an SDF file using the molecule titles

The following was a request on the CCL.net list:

Hi all, Does anyone have a script to split an SDFfile into single sdfs named after each after each individual
molecule as specified in first line of parent multi file?

The solution is simple...

import pybel
for mol in pybel.readfile("sdf", "bigmol.sdf"):

mol.write("sdf", "%s.sdf" % mol.title)

An implementation of RECAP

TJ O’Donnell (of gNova) has written an implementation of the RECAP fragmentation algorithm in 130 lines of Python.
The code is at [1].

TJ’s book, “Design and Use of Relational Databases in Chemistry”, also contains examples of Python code using
Open Babel to create and query molecular databases (see for example the link to Open Babel code in the Appendix).

7.4 Java

The openbabel.jar file in the Open Babel distribution allows you to use the Open Babel C++ library from Java
or any of the other JVM languages (Jython, JRuby, BeanShell, etc.).

7.4.1 Quickstart Example

Let’s begin by looking at an example program that uses Open Babel. The following program carries out file format
conversion, iteration over atoms and SMARTS pattern matching:

7.4. Java 69

http://baoilleach.blogspot.com/2007/07/pybel-hack-that-sd-file.html
http://baoilleach.blogspot.com/2007/07/pybel-just-how-unique-are-your.html
http://baoilleach.blogspot.com/2007/07/pybel-just-how-unique-are-your_12.html
http://baoilleach.blogspot.com/2008/02/calculate-circular-fingerprints-with.html
http://baoilleach.blogspot.com/2008/02/calculate-circular-fingerprints-with.html
http://baoilleach.blogspot.com/2008/10/molecular-graph-ics-with-pybel.html
http://baoilleach.blogspot.com/2008/10/generating-inchis-mini-me-inchikey.html
http://blur.compbio.ucsf.edu/pipermail/zinc-fans/2007-September/000293.html
http://drugdiscoverywizzards.blogspot.com/2007/12/how-good-are-biological-experiments.html
http://cclib.svn.sourceforge.net/viewvc/cclib/tags/cclib-0.8/src/cclib/bridge/cclib2openbabel.py?view=markup
http://flo.nigsch.com/?p=29
http://ctr.wikia.com/wiki/Chemistry_Toolkit_Rosetta_Wiki
http://ccl.net/cgi-bin/ccl/message-new?2009+10+22+002
http://www.gnova.com/
http://gist.github.com/95387
http://www.amazon.com/Design-Use-Relational-Databases-Chemistry/dp/1420064428/ref=sr_1_1?ie=UTF8&s=books&qid=1221754435&sr=1-1
http://www.gnova.com/book/

Open Babel Documentation, Release 2.3.1

import org.openbabel.*;

public class Test {

public static void main(String[] args) {
// Initialise
System.loadLibrary("openbabel_java");

// Read molecule from SMILES string
OBConversion conv = new OBConversion();
OBMol mol = new OBMol();
conv.SetInFormat("smi");
conv.ReadString(mol, "C(Cl)(=O)CCC(=O)Cl");

// Print out some general information
conv.SetOutFormat("can");
System.out.print("Canonical SMILES: " +
conv.WriteString(mol));

System.out.println("The molecular weight is "
+ mol.GetMolWt());

for(OBAtom atom : new OBMolAtomIter(mol))
System.out.println("Atom " + atom.GetIdx()
+ ": atomic number = " + atom.GetAtomicNum()
+ ", hybridisation = " + atom.GetHyb());

// What are the indices of the carbon atoms
// of the acid chloride groups?
OBSmartsPattern acidpattern = new OBSmartsPattern();
acidpattern.Init("C(=O)Cl");
acidpattern.Match(mol);

vectorvInt matches = acidpattern.GetUMapList();
System.out.println("There are " + matches.size() +

" acid chloride groups");
System.out.print("Their C atoms have indices: ");
for(int i=0; i<matches.size(); i++)

System.out.print(matches.get(i).get(0) + " ");
}

}

Output:

Canonical SMILES: ClC(=O)CCC(=O)Cl
The molecular weight is 154.9793599
Atom 1: atomic number = 6, hybridisation = 2
Atom 2: atomic number = 17, hybridisation = 0
Atom 3: atomic number = 8, hybridisation = 2
Atom 4: atomic number = 6, hybridisation = 3
Atom 5: atomic number = 6, hybridisation = 3
Atom 6: atomic number = 6, hybridisation = 2
Atom 7: atomic number = 8, hybridisation = 2
Atom 8: atomic number = 17, hybridisation = 0
There are 2 acid chloride groups
Their C atoms have indices: 1 6

70 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

7.4.2 Installation

Windows

openbabel.jar is installed along with the OpenBabelGUI on Windows, typically in C:/Program Files
(x86)/OpenBabel-2.3.1. As an example of how to use openbabel.jar, download OBTest.java and compile
and run it as follows:

C:\> set CLASSPATH=C:\Program Files (x86)\OpenBabel-2.3.1\openbabel.jar;.
C:\> "C:\Program Files\Java\jdk1.5.0_16\bin\javac.exe" OBTest.java
C:\> "C:\Program Files\Java\jdk1.5.0_16\bin\java.exe" OBTest
Running OBTest...
Benzene has 6 atoms.
C:\>

MacOSX and Linux

The following instructions describe how to compile and use these bindings on MacOSX and Linux:

1. openbabel.jar is included in the Open Babel source distribution in scripts/java. To compile a Java
application that uses this (e.g. the example program shown above), use a command similar to the following:

javac Test.java -cp ../openbabel-2.3.1/scripts/java/openbabel.jar

2. To run the resulting Test.class on MacOSX or Linux you first need to compile the Java bindings as de-
scribed in the section Compile language bindings. This creates lib/libopenbabel_java.so in the build
directory.

3. Add the location of openbabel.jar to the environment variable CLASSPATH, not forgetting to append the
location of Test.class (typically ”.”):

export CLASSPATH=/home/user/Tools/openbabel-2.3.1/scripts/java/openbabel.jar:.

4. Add the location of libopenbabel_java.so to the environment variable LD_LIBRARY_PATH. Addition-
ally, if you have not installed Open Babel globally you should set BABEL_LIBDIR to the location of the Open
Babel library and BABEL_DATADIR to the data directory.

5. Now, run the example application. The output should be as shown above.

7.4.3 API

openbabel.jar provides direct access to the C++ Open Babel library from Java through the namespace
org.openbabel. This binding is generated using the SWIG package and provides access to almost all of the Open
Babel interfaces from Java, including the base classes OBMol, OBAtom, OBBond, and OBResidue, as well as the
conversion framework OBConversion.

Essentially any call in the C++ API is available to Java programs with very little difference in syntax. As a result, the
principal documentation is the Open Babel C++ API documentation. A few differences exist, however:

• Global variables, global functions and constants in the C++ API can be found in
org.openbabel.openbabel_java. The variables are accessible through get methods.

• When accessing various types of OBGenericData, you will need to cast them to the particular subclass using the
global functions, toPairData, toUnitCell, etc.

• The Java versions of the iterator classes in the C++ API (that is, all those classes ending in Iter) implement the
Iterator and Iterable interfaces. This means that the following foreach loop is possible:

7.4. Java 71

http://openbabel.svn.sf.net/viewvc/openbabel/openbabel/tags/openbabel-2-2-1/scripts/java/OBTest.java?revision=2910
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBBond.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBResidue.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBConversion.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBGenericData.shtml

Open Babel Documentation, Release 2.3.1

for(OBAtom atom : new OBMolAtomIter(mol)) {
System.out.println(atom.GetAtomicNum());

}

• To facilitate use of the OBMolAtomBFSIter, OBAtom has been extended to incorporate a CurrentDepth value,
accessible through a get method:

for(OBAtom atom : new OBMolAtomBFSIter(mol)) {
System.out.println(atom.GetCurrentDepth());

}

7.5 Perl

7.5.1 Installation

The Perl bindings are available only on MacOSX and Linux. (We could not get them to work on Windows.) See
Compile language bindings for information on how to configure CMake to compile and install the Perl bindings.

7.5.2 Using Chemistry::OpenBabel

The Chemistry::OpenBabel module is designed to allow Perl scripts to use the C++ Open Babel library. The bindings
are generated using the SWIG package and provides access to almost all of the Open Babel interfaces via Perl, includ-
ing the base classes OBMol, OBAtom, OBBond, and OBResidue, as well as the conversion framework OBConversion.

PerlMol

For developing chemistry in Perl, you should also look at the PerlMol project.

As such, essentially any call in the C++ API is available to Perl access with very little difference in syntax. This
guide is designed to give examples of common Perl syntax for Chemistry::OpenBabel and pointers to the appropriate
sections of the API documentation.

The example script below creates atoms and bonds one-by-one using the OBMol, OBAtom, and OBBond classes.

#!/usr/bin/perl

use Chemistry::OpenBabel;

my $obMol = new Chemistry::OpenBabel::OBMol;

$obMol->NewAtom();
$numAtoms = $obMol->NumAtoms(); # now 1 atom

my $atom1 = $obMol->GetAtom(1); # atoms indexed from 1
$atom1->SetVector(0.0, 1.0, 2.0);
$atom1->SetAtomicNum(6); # carbon atom

$obMol->NewAtom();
$obMol->AddBond(1, 2, 1); # bond between atoms 1 and 2 with bond order 1
$numBonds = $obMol->NumBonds(); # now 1 bond

$obMol->Clear();

72 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBMolAtomBFSIter.shtml
http://perlmol.org/

Open Babel Documentation, Release 2.3.1

More commonly, Open Babel can be used to read in molecules using the OBConversion framework. The following
script reads in molecular information from a SMILES string, adds hydrogens, and writes out an MDL file as a string.

#!/usr/bin/perl

use Chemistry::OpenBabel;

my $obMol = new Chemistry::OpenBabel::OBMol;
my $obConversion = new Chemistry::OpenBabel::OBConversion;
$obConversion->SetInAndOutFormats("smi", "mdl");
$obConversion->ReadString($obMol, "C1=CC=CS1");

$numAtoms = $obMol->NumAtoms(); # now 5 atoms

$obMol->AddHydrogens();
$numAtoms = $obMol->NumAtoms(); # now 9 atoms

my $outMDL = $obConversion->WriteString($obMol);

The following script writes out a file using a filename, rather than reading and writing to a Perl string.

#!/usr/bin/perl

use Chemistry::OpenBabel;

my $obMol = new Chemistry::OpenBabel::OBMol;
my $obConversion = new Chemistry::OpenBabel::OBConversion;
$obConversion->SetInAndOutFormats("pdb", "mol2");
$obConversion->ReadFile($obMol, "1ABC.pdb");

$obMol->AddHydrogens();

print "# of atoms: $obMol->NumAtoms()";
print "# of bonds: $obMol->NumBonds()";
print "# of residues: $obMol->NumResidues()";

$obConversion->WriteFile($obMol, "1abc.mol2");

7.5.3 Examples

Output Molecular Weight for a Multi-Molecule SDF File

Let’s say we want to print out the molecular weights of every molecule in an SD file. Why? Well, we might want
to plot a histogram of the distribution, or see whether the average of the distribution is significantly different (in the
statistical sense) compared to another SD file.

use Chemistry::OpenBabel;

my $obconversion = new Chemistry::OpenBabel::OBConversion;
$obconversion->SetInFormat("sdf");
my $obmol = new Chemistry::OpenBabel::OBMol;

my $notatend = $obconversion->ReadFile($obmol, "../xsaa.sdf");
while ($notatend) {

print $obmol->GetMolWt(), "\n";
$obmol->Clear();

7.5. Perl 73

Open Babel Documentation, Release 2.3.1

$notatend = $obconversion->Read($obmol);
}

Add and Delete Atoms

This script shows an example of deleting and modifying atoms to transform one structure to a related one. It operates
on a set of substituted thiophenes, deletes the sulfur atom (note that R1 and R2 may contain sulfur, so the SMARTS
pattern is designed to constrain to the ring sulfur), etc. The result is a substituted ethylene, as indicated in the diagrams.

use Chemistry::OpenBabel;

my $obMol = new Chemistry::OpenBabel::OBMol;
my $obConversion = new Chemistry::OpenBabel::OBConversion;
my $filename = shift @ARGV;

$obConversion->SetInAndOutFormats("xyz", "mol");
$obConversion->ReadFile($obMol, $filename);

for (1..$obMol->NumAtoms()) {
$atom = $obMol->GetAtom($_);
look to see if this atom is a thiophene sulfur atom
if ($atom->MatchesSMARTS("[#16D2]([#6D3H1])[#6D3H1]")) {

$sulfurIdx = $atom->GetIdx();
see if this atom is one of the carbon atoms bonded to a thiophene sulfur
} elsif ($atom->MatchesSMARTS("[#6D3H1]([#16D2][#6D3H1])[#6]")) {

if ($c2Idx == 0) { $c2Idx = $atom->GetIdx(); }
else {$c5Idx = $atom->GetIdx(); }

}
}

Get the actual atom objects -- indexing will change as atoms are added and deleted!
$sulfurAtom = $obMol->GetAtom($sulfurIdx);
$c2Atom = $obMol->GetAtom($c2Idx);
$c5Atom = $obMol->GetAtom($c5Idx);

$obMol->DeleteAtom($sulfurAtom);

74 Chapter 7. Write software using the Open Babel library

Open Babel Documentation, Release 2.3.1

$obMol->DeleteHydrogens($c2Atom);
$obMol->DeleteHydrogens($c5Atom);

$c2Atom->SetAtomicNum(1);
$c5Atom->SetAtomicNum(1);

$obConversion->WriteFile($obMol, "$filename.mol");

7.6 CSharp and OBDotNet

OBDotNet is a compiled assembly that allows Open Babel to be used from the various .NET languages (e.g. Visual
Basic, C#, IronPython, IronRuby, and J#) on Windows, Linux and MacOSX. The current version is OBDotNet 0.4.

7.6.1 Installation

Windows

The OBDotNet.dll assembly provided on Windows was compiled using the .NET framework v3.5 for the x86
platform. To use it, you will need to compile your code using .NET v3.5 or newer and you will also need to target x86
(/platform:x86).

The following instructions describe how to compile a simple C# program that uses OBDotNet:

1. First you need to download and install the OpenBabelGUI version 2.3.1

2. Next create an example CSharp program that uses the Open Babel API (see below for one or use this link). Let’s
call this example.cs.

3. Copy OBDotNet.dll from the Open Babel installation into the same folder as example.cs.

4. Open a command prompt at the location of example.cs and compile it as follows:

C:\Work> C:\Windows\Microsoft.NET\Framework\v3.5\csc.exe
/reference:OBDotNet.dll /platform:x86 example.cs

5. Run the created executable, example.exe, to discover the molecule weight of propane:

C:\Work> example.exe
44.09562

If you prefer to use the MSVC# GUI, note that the Express edition does not have the option to choose x86 as a
target. This will be a problem if you are using a 64-bit operating system. There’s some information at Coffee Driven
Development on how to get around this.

MacOSX and Linux

On Linux and MacOSX you need to use Mono, the open source implementation of the .NET framework, to compile
the bindings. The following instructions describe how to compile and use these bindings:

1. OBDotNet.dll is included in the Open Babel source distribution in scripts/csharp. To compile a
CSharp application that uses this (e.g. the example program shown below), use a command similar to the
following:

gmcs example.cs /reference:../openbabel-2.3.1/scripts/csharp/OBDotNet.dll

7.6. CSharp and OBDotNet 75

http://openbabel.svn.sf.net/viewvc/openbabel/openbabel/tags/openbabel-2-2-1/scripts/csharp/example.cs?revision=2910
http://coffeedrivendevelopment.blogspot.com/2008/06/hacking-vs-c-2008-express.html
http://coffeedrivendevelopment.blogspot.com/2008/06/hacking-vs-c-2008-express.html

Open Babel Documentation, Release 2.3.1

2. To run this on MacOSX or Linux you need to compile the CSharp bindings as described in the section Compile
language bindings. This creates lib/libopenbabel_csharp.so in the build directory.

3. Add the location of OBDotNet.dll to the environment variable MONO_PATH. Add the location of
libopenbabel_csharp.so to the environment variable LD_LIBRARY_PATH. Additionally, if you have
not installed Open Babel globally you should set BABEL_LIBDIR to the location of the Open Babel library and
BABEL_DATADIR to the data directory.

4. Run example.exe:

$./example.exe
44.09562

7.6.2 OBDotNet API

The API is almost identical to the Open Babel C++ API. Differences are described here.

Using iterators

In OBDotNet, iterators are provided as methods of the relevant class. The full list is as follows:

• OBMol has .Atoms(), .Bonds(), .Residues(), and .Fragments(). These correspond to OBMo-
lAtomIter, OBMolBondIter, OBResidueIter and OBMolAtomDFSIter respectively.

• OBAtom has .Bonds() and .Neighbours(). These correspond to OBAtomBondIter and
OBAtomAtomIter respectively.

Such iterators are used as follows:

foreach (OBAtom atom in myobmol.Atoms())
System.Console.WriteLine(atom.GetAtomType());

Other iterators in the C++ API not listed above can still be used through their IEnumerator methods.

Handling OBGenericData

To cast OBGenericData to a specific subclass, you should use the .Downcast <T> method, where T is a subclass
of OBGenericData.

Open Babel Constants

Open Babel constants are available in the class openbabelcsharp.

7.6.3 Examples

The following sections show how the same example application would be programmed in C#, Visual Basic and Iron-
Python. The programs print out the molecular weight of propane (represented by the SMILES string “CCC”).

C#

76 Chapter 7. Write software using the Open Babel library

http://openbabel.org/dev-api/classOpenBabel_1_1OBMolAtomIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMolAtomIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMolBondIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBResidueIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMolAtomDFSIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtomBondIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtomAtomIter.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBGenericData.shtml

Open Babel Documentation, Release 2.3.1

using System;
using OpenBabel;

namespace MyConsoleApplication
{

class Program
{

static void Main(string[] args)
{

OBConversion obconv = new OBConversion();
obconv.SetInFormat("smi");
OBMol mol = new OBMol();
obconv.ReadString(mol, "CCC");
System.Console.WriteLine(mol.GetMolWt());

}
}

}

Visual Basic

Imports OpenBabel

Module Module1

Sub Main()
Dim OBConv As New OBConversion()
Dim Mol As New OBMol()

OBConv.SetInFormat("smi")
OBConv.ReadString(Mol, "CCC")
System.Console.Write("The molecular weight of propane is " & Mol.GetMolWt())

End Sub

End Module

IronPython

import clr
clr.AddReference("OBDotNet.dll")

import OpenBabel as ob

conv = ob.OBConversion()
conv.SetInFormat("smi")
mol = ob.OBMol()
conv.ReadString(mol, "CCC")
print mol.GetMolWt()

7.7 Ruby

As with the other language bindings, just follow the instructions at Compile language bindings to build the Ruby
bindings.

7.7. Ruby 77

Open Babel Documentation, Release 2.3.1

Like any Ruby module, the Open Babel bindings can be used from a Ruby script or interactively using irb as follows:

$ irb
irb(main):001:0> require ’openbabel’
=> true
irb(main):002:0> c=OpenBabel::OBConversion.new
=> #<OpenBabel::OBConversion:0x2acedbadd020>
irb(main):003:0> c.set_in_format ’smi’
=> true
irb(main):004:0> benzene=OpenBabel::OBMol.new
=> #<OpenBabel::OBMol:0x2acedbacfa10>
irb(main):005:0> c.read_string benzene, ’c1ccccc1’
=> true
irb(main):006:0> benzene.num_atoms
=> 6

78 Chapter 7. Write software using the Open Babel library

Chapter 8
Cheminformatics 101

An introduction to the computer science and chemistry of chemical information systems

Copyright © 2009 by Craig A. James, eMolecules, Inc.

The original version of this introduction to cheminformatics can be found on the eMolecules website. It is included
here with the permission of the author.

8.1 Cheminformatics Basics

8.1.1 What is Cheminformatics?

Cheminformatics is a cross between Computer Science and Chemistry – the process of storing and retrieving informa-
tion about chemical compounds.

Information Systems are concerned with storing, retrieving, and searching information, and with storing relationships
between bits of data. For example:

79

http://www.emolecules.com/doc/cheminformatics-101.php

Open Babel Documentation, Release 2.3.1

Op-
era-
tion

Classical
Information
System

Chemical Information System

Store Name =
‘Jimmy
Carter’

Stores text,
numbers, dates,
...

Stores chemical compounds
and information about them

Re-
trieve

Find record
#13282

Retrieves
‘Jimmy Carter’

Find
CC(=O)C4CC3C2CC(C)C1=C(C)...
C(=O)CC(O)C1C2CCC3(C)C4

Retrieves:

Search Find
Presidents
named ‘Bush’

George Bush
and George W.
Bush

Find molecules containing Retrieves:

Rela-
tion-
ship

Year Carter
was elected

Answer:
Elected in 1976

What’s the logP(o/w) of Answer: logP(o/W) = 2.62

8.1.2 How is Cheminformatics Different?

There are four key problems a cheminformatics system solves:

1. Store a Molecule

Computer scientists usually use the valence model of chemistry to represent compounds. The next section
Representing Molecules, discusses this at length.

2. Find exact molecule

If you ask, “Is Abraham Lincoln in the database?” it’s not hard to find the answer. But, given a specific molecule,
is it in the database? What do we know about it? This may seem seem simple at first glance, but it’s not, as we’ll
see when we discuss tautomers, stereochemistry, metals, and other “flaws” in the valence model of chemistry.

3. Substructure search

If you ask, “Is anyone named Lincoln in the database?” you usually expect to find the former President and a
number of others - this is called a search rather than a lookup. For a chemical informatics system, we have a
substructure search: Find all molecules containing a partial molecule (the “substructure”) drawn by the user. The
substructure is usually a functional group, “scaffold”, or core structure representing a class of molecules. This

80 Chapter 8. Cheminformatics 101

Open Babel Documentation, Release 2.3.1

too is a hard problem, much harder than most text searches, for reasons that go to the very root of mathematics
and the theory of computability.

4. Similarity search

Some databases can find similar-sounding or misspelled words, such as “Find Lincon” or “find Cincinati”,
which respectively might find Abraham Lincoln and Cincinnati. Many chemical information systems can find
molecules similar to a given molecule, ranked by similarity. There are several ways to measure molecular
similarity, discussed further in the section on Molecular Similarity.

8.2 Representing Molecules

8.2.1 What is a Molecule?

One of the greatest achievements in chemistry was the development of the valence model of chemistry, where a
molecule is represented as atoms joined by semi-rigid bonds that can be single, double, or triple. This simple mental
model has little resemblance to the underlying quantum-mechanical reality of electrons, protons and neutrons, yet it
has proved to be a remarkably useful approximation of how atoms behave in close proximity to one another, and has
been the foundation of chemical instruction for well over a century.

The valence model is also the foundation of modern chemical information systems. When a Computer Scientist
approaches a problem, the first task is to figure out a datamodel that represents the problem to be solved as information.
To the Computer Scientist, the valence model naturally transforms into a graph, where the nodes are atoms and the
edges are bonds. Computer Scientists know how to manipulate graphs - mathematical graph theory and computer
science have been closely allied since the invention of the digital computer.

There are atoms and space. Everything else is opinion.

—Democritus

However, the valence model of chemistry has many shortcomings. The most obvious is aromaticity, which quickly
required adding the concept of a non-integral “aromatic” distributed bond, to the single/double/triple bonds of the
simple valence model. And that was just the start - tautomers, ferrocenes, charged molecules and a host of other
common molecules simply don’t fit the valence model well.

This complicates life for the computer scientist. As we shall see, they are the source of most of the complexity of
modern cheminformatics systems.

8.2.2 Older systems: Connection Tables

Most of the early (and some modern) representations of molecules were in a connection table, literally, a table enu-
merating the atoms, and a table enumerating the bonds and which atoms each bond connected. Here is an example of
connection-table (CTAB) portion of an MDL “SD” file (the data portion is not shown here):

MOLCONV

3 2 0 0 1 0 1 V2000
5.9800 -0.0000 -0.0000 Br 0 0 0 0 0 0
4.4000 -0.6600 0.8300 C 0 0 0 0 0 0
3.5400 -1.3500 -0.1900 C 0 0 0 0 0 0
1 2 1 0
2 3 1 0

This simple example illustrates most of the key features. The molecule has three atoms, two bonds, and is provided
with three-dimensional (x,y,z) coordinates. MDL provides extensive documentation for their various CTFile formats
if you are interested in the details.

8.2. Representing Molecules 81

http://www.mdli.com/downloads/downloadable/index.jsp

Open Babel Documentation, Release 2.3.1

Connection tables can capture the valence model of chemistry fairly well, but they suffer from three problems:

1. They are very inefficient, taking on the order of a dozen or two of bytes of data per atom and per bond. Newer line
notations (discussed below) represent a molecules with an average of 1.2 to 1.5 bytes per atom, or 6-8 bytes per atom
if coordinates are added.

2. Many suffered from lack of specificity. For example, since hydrogens are often not specified, there can be ambiguity
as to the electronic state of some molecules, because the connection-table format does not explicitly state the valence
assumptions.

3. Most mix the concept of connectivity (what the atoms are and how they are connected) with other data such as 2D
and 3D coordinates. For example, if you had two different conformers of a molecule, most connection tables would
require you to specify the entire molecule twice, even though the connection table is identical in both.

8.2.3 Line Notations: InChI, SMILES, WLN and others

A line notation represents a molecule as a single-line string of characters.

WLN - Wisswesser Line Notation WLN, invented by William J. Wisswesser in the early 1950’s, was
the first comprehensive line notation, capable of representing arbitrarily complex molecules cor-
rectly and compactly.

1H = CH4 Methane
2H = CH3-CH3 Ethane
3H = CH3-CH2-CH3 Propane
QVR BG CG DG EG FG = C7HCl5O2 Pentachlorbenzoate

WLN was the first line notation to feature a canonical form, that is, the rules for WLN meant there
was only one “correct” WLN for any particular molecule. Those versed in WLN were able to
write molecular structure in a line format, communicate molecular structure to one another and to
computer programs. Unfortunately, WLN’s complexity prevented widespread adoption. The rules
for correct specification of WLN filled a small book, encoding those rules into a computer proved
difficult, and the rules for the canonicalization were computationally intractable.

SMILES - Simplified Molecular Input Line Entry System The best-known line notation today is
SMILES. It was by Arthur and David Weininger in response to a need for a simpler, more “hu-
man accessible” notation than WLN. While SMILES is not trivial to learn and write, most chemists
can create correct SMILES with just a few minutes training, and the entire SMILES language can
be learned in an hour or two. You can read more details here. Here are some examples:

C methane
CC ethane
C=C ethene
Oc1ccccc1 phenol

SMILES, like WLN, has a canonical form, but unlike WLN, Weininger relied on the computer,
rather than the chemist, to convert a non-canonical SMILES to a canonical SMILES. This important
separation of duties was key to making SMILES easy to enter. (Read more about canonicalization
below.)

InChI InChI is the latest and most modern of the line notations. It resolves many of the chemical ambi-
guities not addressed by SMILES, particularly with respect to stereo centers, tautomers and other of
the “valence model problems” mentioned above.

You can read more about InChI at the Official Web Site, or on the Unofficial InChI FAQ page.

82 Chapter 8. Cheminformatics 101

http://www.opensmiles.org/spec/open-smiles.html
http://www.iupac.org/projects/2000/2000-025-1-800.html
http://wwmm.ch.cam.ac.uk/inchifaq/index.html

Open Babel Documentation, Release 2.3.1

8.2.4 Canonicalization

A critical feature of line notations is canonicalization - the ability to choose one “blessed” representation from among
the many. Consider:

OCC ethanol
CCO ethanol

Both of these SMILES represent the same molecule. If we could all agree that one of these was the “correct” or
“canonical” SMILES for ethanol, then we would always store it the same way in our database. More importantly, if
we want to ask, “Is ethanol in our database” we know that it will only be there once, and that we can generate the
canonical SMILES for ethanol and look it up.

(Note that in theory one can create a canonical connection table, too, but it’s not as useful since informatics systems
usually have trouble indexing BLOBs - large objects.)

8.2.5 Line Notation versus Connection Tables: A practical matter

Why are line notations preferred over connection-table formats? In theory, either could express the same information.
But there are practical difference, mostly related to the complexity of “parsing” a connection table. If you know that
the whole molecule is on one line of a file, it’s easy to parse.

Line notations are also very nice for database applications. Relational databases have datatypes that, roughly speaking,
are divided into numbers, text, and “everything else”, also known as “BLOBs” (Binary Large OBjects). You can store
line notations in the “text” fields much more easily than connection tables.

Line notations also have pragmatic advantages. Modern Unix-like systems (such as UNIX, Linux and Cygwin) have
a number of very powerful “filter” text-processing programs that can be “piped” together (connected end-to-end) to
perform important tasks. For example, to count the number of molecules containing aliphatic nitrogen in a SMILES
file, I can simply:

grep N file.smi | wc

(grep looks for a particular expression, in this case N, and prints any line that contains it, and wc (“word count”) counts
the number of words and lines.)

This is just a simple example of the power available via “script” programs using “filters” on Unix-like systems. Unix
filters are much less useful for connection-table formats, because each molecule is spread over many lines.

8.2.6 Query Languages: SMARTS

In addition to a typographical way to represent molecules, we also need a way to enter queries about molecules, such
as, “Find all molecules that contain a phenol.”

With text, we’re familiar with the concept of typing a partial word, such as “ford” to find “Henry Ford” as well as “John
Hartford”. For chemistry, we can also specify partial structures, and find anything that contains them. For example:

8.2. Representing Molecules 83

Open Babel Documentation, Release 2.3.1

Query Database Matches?

YES (matched portion
highlighted in blue)

NO (double bond indicated
doesn’t match)

eMolecules, Inc.

eMolecules is a one-stop shop for suppliers and information for over 8 million chemical compounds. Under the
hood is a chemical registration technology based on Open Babel.

The simplest query language for chemistry is SMILES itself: Just specify a structure, such as Oc1ccccc1, and search.
This is how eMolecules’ basic searching works (see Sidebar). It’s simple and, because of the high-performance indexes
in eMolecules, is also very fast.

However, for general-purpose cheminformatics, one needs more power. What if the substructure you’re looking for
isn’t a valid molecule? For example ClccBr (1,2- substitution on an aromatic ring) isn’t a whole molecule, since the
concept of aromaticity is only sensible in the context of a whole ring system.

Or what if the thing we’re looking for isn’t a simple atom such as Br, but rather a concept like “Halogen”? Or, “A
terminal methyl”?

To address this, cheminformatics systems have special query languages, such as SMARTS (SMiles ARbitrary Target
Specification). SMARTS is a close cousin to SMILES, but it has expressions instead of simple atoms and bonds. For
example, [C,N] will find an atom that is either carbon or nitrogen.

8.2.7 IUPAC Names, Trade Names, Common Names

Chemistry also has three other important name systems:

IUPAC Names IUPAC (the International Union of Pure and Applied Chemistry) established a naming convention
that is widely used throughout chemistry. Any chemical can be named, and all IUPAC names are unambiguous.
This textual representation is aimed at humans, not computers: Chemists versed in IUPAC nomenclature (which
is widely taught) can read an IUPAC name and visualize or draw the molecule.

Trade Names Names such as Tylenol™ and Valium™ are given to compounds and formulations by manufacturers
for marketing and sales purposes, and for regulatory purposes.

84 Chapter 8. Cheminformatics 101

http://www.emolecules.com
http://www.iupac.org/dhtml_home.html
http://www.chem.qmul.ac.uk/iupac/

Open Babel Documentation, Release 2.3.1

Common names Names such as “aspirin” or “alcohol” for substances that are in widespread use.

8.3 Substructure Searching with Indexes

8.3.1 What is Indexing?

Indexing is pre-computing the answers to portions of expected questions before they’re asked, so that when the question
comes, it can be answered quickly.

Take your favorite search engine (AOL, Yahoo!, Google, MSN, ...) for example. Without indexing, they might wait
until you ask for “John Hartford Bluegrass”, then start searching the web, and in a year or two find all the web pages
about the deceased banjo/fiddle player and steamboat captain. That would probably not impress you.

Instead, these search engines search the web before you ask your question, and build an index of the words they find.
When you type in “Bluegrass John Hartford”, they already know all of the pages that have “John”, all of the pages
with “Hartford”, and all of the pages with “Bluegrass”. Instead of searching, they examine their index, and find pages
that are on all three lists, and quickly find your results. (NB: It’s actually a lot more complex, but this illustrates the
main idea of indexing.)

8.3.2 Indexes for Chemicals

Instead of indexing words, cheminformatics systems index substructures. Although there are many schemes for doing
this, cheminformatics systems all use the same fundamental principle: they decompose the molecule into smaller bits,
and index those.

8.3. Substructure Searching with Indexes 85

Open Babel Documentation, Release 2.3.1

Roughly speaking, a cheminformatics system will index each of the substructures (fragments) above, so that every
molecule that contains each fragment is known.

When a query is entered, the cheminformatics system breaks apart the query using the same technique, to find all of
the fragments in the query. It then checks its index for each fragment, and combines the lists it finds to get only those
molecules that have all of those fragments.

This doesn’t mean that all molecules returned by the index actually are matches. In the language of databases, we say
the index will return false positives, candidate molecules that don’t actually match the substructure search.

Consider our example of searching for “John Hartford” - the index might return many pages that have both “John”
and “Hartford”, yet have nothing to do with bluegrass music or steamboats. For example, it might return a page
containing, “President John F. Kennedy visited Hartford, Connecticut today...”. To confirm that the search system
has found something relevant, it must check the pages return from the index to ensure that the specific phrase “John
Hartford” is present. However, notice that this is much faster than searching every page, since the overwhelming
majority of web pages were instantly rejected because they have neither “John” nor “Hartford” on them.

Similarly, a chemical fragment index serves to find only the most likely molecules for our substructure match - anything
that the index didn’t find is definitely not a match. But we still have to examine each of the molecules returned by the
indexing system and verify that the complete substructure for which we are searching is present.

8.3.3 NP-Complete - A Little about Computability

Searching through a page of text for the words “John Hartford” is pretty easy for a modern computer. Although
false positives returned by the index are a nuisance and impair performance, they are not a catastrophe. Not so for
substructure matching. Unfortunately, substructure matching falls into a category of “hard” mathematical problems,
which means false positives from the index are a big problem.

Substructure matching (finding a certain functional group within a molecule) is an example of what mathematicians
call graph isomorphism, and is in a class of problems called NP Complete. Roughly speaking, this means the time
it takes to do a substructure search is non-polynomial, i.e. exponential in the number of atoms and bonds. To see
why this is a computational disaster, compare two tasks, one that takes polynomial time, k1*N2, versus one that takes
exponential time k2*2N. Our polynomial task is bad enough: If we double N, it takes four times as long to solve. But
the exponential task is worse: Every time we add an atom it doubles. So going from one atom to two doubles the time,
and going from 100 atoms to 101 atoms doubles the time. Even if we can get k2 down to a millionth of k1, we’re still
in trouble - a million is just 220 or twenty atoms away.

It has been mathematically proven that substructure searching is in the set of NP Complete problems, so there’s no
point wasting our time searching for a polynomial algorithm. The good news is that most molecules have “low con-
nectivity”, meaning most atoms have fewer than four bonds, unlike the weird and twisted graphs that mathematicians
consider. In practice, most substructure matching can be done in polynomial time around N2 or N3. But even with this
improvement, substructure matching is an “expensive” time-consuming task for a computer.

The key point is that indexing is particularly important for cheminformatics systems. The typical modern computer
can only examine a few thousand molecules per second, so examining millions of molecules one-by-one is out of the
question. The indexing done by a modern cheminformatics system is the key to its performance.

8.4 Molecular Similarity

Substructure searching is a very powerful technique, but sometimes it misses answers for seemingly trivial differences.
We saw this earlier with the following:

86 Chapter 8. Cheminformatics 101

http://planetmath.org/?op=getobj&from=objects&id=1708
http://en.wikipedia.org/wiki/Np_complete

Open Babel Documentation, Release 2.3.1

Query Target

We’re looking for steroids... But we don’t find this one because of the double bond

It is somewhat like searching for “221b Baker Street” and finding nothing because the database contains “221B Baker
Street” and the system doesn’t consider “b” and “B” a match.

A good similarity search would find the target structure shown above, because even though it is not a substructure
match, it is highly similar to our query.

There are many ways to measure similarity.

2D topology The best-known and most widely used similarity metrics compare the two-dimensional topology, that
is, they only use the molecule’s atoms and bonds without considering its shape.

Tanimoto similarity is perhaps the best known as it is easy to implement and fast to compute. An excellent
summary of 2D similarity metrics can be found in section 5.3 of the Daylight Theory Manual.

3D configuration One of the most important uses of similarity is in the discovery of new drugs, and a molecule’s
shape is critical to it’s medicinal value (see QSAR).

3D similarity searches compare the configuration (also called the “conformation”) of a molecule to other
molecules. The “electronic surface” of the molecule is the important bit - the part that can interact with other
molecules. 3D searches compare the surfaces of two molecules, and how polarized or polarizable each bit of the
surface is.

3D similarity searches are uncommon, for two reasons: It’s difficult and it’s slow. The difficulty comes from the
complexity of molecular interactions - a molecule is not a fixed shape, but rather a dynamic object that changes
according to its environment. And the slowness comes from the difficulty: To get better results, scientists
employ more and more complex programs.

Physical Properties The above 2D and 3D similarity are based on the molecule’s structure. Another technique com-
pares the properties - either computed or measured or both - and declares that molecules with many properties
in common are likely to have similar structure. It is the idea of QSAR taken to the database.

Clustering “Clustering” is the process of differentiating a set of things into groups where each group has common
features. Molecules can be clustered using a variety of techniques, such as common 2D and/or 3D features.

Note that clustering is not a similarity metric per se (the topic of this section), but it may use various similarity
metrics when computing clusters. It is included here because it can be used as a “cheap substitute”. That is, when
someone wants to find compounds similar to a known compound, you can show them the group (the cluster) to
which the compound belongs. It allows you to pre-compute the clusters, spending lots of computational time up
front, and then give answers very quickly.

Many cheminformatics databases have one or more similarity searches available.

8.5 Chemical Registration Systems

Chemical Registration is the “big brother” of cheminformatics.

8.5. Chemical Registration Systems 87

http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
http://en.wikipedia.org/wiki/QSAR

Open Babel Documentation, Release 2.3.1

A cheminformatics system is primarily devoted to recording chemical structure. Chemical Registration systems are
additionally concerned with:

• Structural novelty - ensure that each compound is only registered once

• Structural normalization - ensure that structures with alternative representations (such as nitro groups, fer-
rocenes, and tautomers) are entered in a uniform way.

• Structure drawing - ensure that compounds are drawn in a uniform fashion, so that they can be quickly recog-
nized “by eye”.

• Maintaining relationships among related compounds. For example, all salt forms of a compound should be
recognized as being related to one another, and compounds in different solvates are also related.

• Registering mixtures, formulations and alternative structures.

• Registering compounds the structure of which is unknown.

• Roles, responsibilities, security, and company workflow.

• Updates, amendments and corrections, and controlling propagation of changes (e.g. does changing a compound
change a mixture containing that compound?)

The scope of Chemical Registration Systems is far beyond the goals of this brief introduction to cheminformatics.
However, to illustrate just one of the points above, let’s consider structural novelty. In real life, chemical structure can
be very ambiguous. Imagine you have five bottles of a particular compound that has a stereo center:

1. The contents of the first bottle were carefully analyzed, and found to be a single stereoisomer.

2. The contents of the second bottle were carefully analyzed and found to contain a racemic mixture of the
stereoisomers.

3. The stereoisomers of the third bottle are unknown. It may be pure, or have one predominant form, or be a
racemic mixture.

4. The fourth bottle was obtained by running part of the contents of bottle #2 through a chromatographic separation.
It is isotopically pure, but you don’t know which stereoisomer.

5. The fifth bottle is the other fraction from the same separation of #4. It is also isotopically pure, but you don’t
know which stereoisomer, but you know it’s the opposite of #4.

Which of these five bottles contain the same compound, and which are different? That is the essential task of a
chemical registry system, which would consider all five to be different. After all, you probably have data about each
bottle (that’s why you have them), and you must be able to record it and not confuse it with the other bottles.

In this example above, consider what is known and not known:

Bottle Known Not Known
1 Everything Nothing
2 Everything Nothing
3 Compound is known Stereochemistry
4 Compound and purity known, stereochemistry is opposite of #5 Specific stereochemistry
5 Compound and purity known, stereochemistry is opposite of #4 Specific stereochemistry

A cheminformatics system has no way to record the contents of the five bottles; it is only concerned with structure.
By contrast, a chemical registration system can record both what is known as well as what is not known. This is the
critical difference between the two.

88 Chapter 8. Cheminformatics 101

Chapter 9
Radicals and SMILES extensions

9.1 The need for radicals and implicit hydrogen to coexist

Hydrogen deficient molecules, radicals, carbenes, etc., are not well catered for by chemical software aimed at phar-
maceuticals. But radicals are important reaction intermediates in living systems as well as many other fields, such as
polymers, paints, oils, combustion and atmospheric chemistry. The examples given here are small molecules, relevant
to the last two applications.

Chemistry software to handle radicals is complicated by the common use of implicit hydrogen when describing
molecules. How is the program to know when you type “O” whether you mean an oxygen atom or water? This
ambiguity leads some to say that hydrogens should always be explicit in any chemical description. But this is not the
way that most chemists work. A straight paraffinic chain from which a hydrogen had been abstracted might commonly

be represented by something like:

This uses implicit hydrogens and an explicit radical centre. But sometimes the hydrogens are explicit and the radical
centre implicit, as when CH3is used to represent the methyl radical.

9.2 How Open Babel does it

Open Babel accepts molecules with explicit or implicit hydrogens and can convert between the two. It will also handle
radicals (and other hydrogen-deficient species) with implicit hydrogen by using internally a property of an atom,
_spinmultiplicity, modelled on the RAD property in MDL MOL files and also used in CML. This can be regarded in
the present context as a measure of the hydrogen deficiency of an atom. Its value is:

• 0 for normal atoms,

• 2 for radical (missing one hydrogen) and

• 1 or 3 for carbenes and nitrenes (missing two hydrogens).

It happens that for some doubly deficient species, like carbene CH2 and oxygen atoms, the singlet and triplet species
are fairly close in energy and both may be significant in certain applications such as combustion, atmospheric or
preparative organic chemistry, so it is convenient that they can be described separately. There are of course an in-
finity of other electronic configurations of molecules but Open Babel has no special descriptors for them. However,
even more hydrogen-deficient atoms are indicated by the highest possible value of spinmultiplicity (C atom has spin
multiplicity of 5). (This extends MDL’s RAD property which has a maximum value of 3.)

If the spin multiplicity of an atom is not input explicitly, it is set (in OBMol::AssignSpinMultiplicity()) when the input
format is MOL, SMI, CML or Therm. This routine is called after all the atoms and bonds of the molecule are known.
It detects hydrogen deficiency in an atom and assigns spin multiplicity appropriately. But because hydrogen may be
implicit it only does this for atoms which have at least one explicit hydrogen or on atoms which have had ForceNoH()
called for them - which is effectively zero explicit hydrogens. The latter is used, for instance, when SMILES inputs

89

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ad85ec95d1f909843737b67d70638f3c9
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml#a1a92c9eb656eb9ef43f03c717a38adc3

Open Babel Documentation, Release 2.3.1

[O] to ensure that it is seen as an oxygen atom (spin multiplicity=3) rather than water. Otherwise, atoms with no
explicit hydrogen are assumed to have a spin multiplicity of 0, i.e with full complement of implicit hydrogens.

In deciding which atoms should be have spin multiplicity assigned, hydrogen atoms which have an isotope specifica-
tion (D,T or even 1H) do not count. So SMILES N[2H] is NH2D (spin multiplicity left at 0, so with a full content
of implicit hydrogens), whereas N[H] is NH (spin multiplicity=3). A deuterated radical like NHD is represented by
[NH][2H].

9.3 In radicals either the hydrogen or the spin multiplicity can be im-
plicit

Once the spin multiplicity has been set on an atom, the hydrogens can be implicit even if it is a radical. For instance,
the following mol file, with explicit hydrogens, is one way of representing the ethyl radical:

ethyl radical
OpenBabel04010617172D
Has explicit hydrogen and implicit spin multiplicity
7 6 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0
0.0000 0.0000 0.0000 H 0 0 0 0 0
0.0000 0.0000 0.0000 H 0 0 0 0 0
0.0000 0.0000 0.0000 H 0 0 0 0 0
0.0000 0.0000 0.0000 H 0 0 0 0 0
0.0000 0.0000 0.0000 H 0 0 0 0 0

1 2 1 0 0 0
1 3 1 0 0 0
1 4 1 0 0 0
1 5 1 0 0 0
2 6 1 0 0 0
2 7 1 0 0 0

M END

When read by Open Babel the spinmultiplicity is set to 2 on the C atom 2. If the hydrogens are made implicit, perhaps
by the -d option, and the molecule output again, an alternative representation is produced:

ethyl radical
OpenBabel04010617192D
Has explicit spin multiplicity and implicit hydrogen
2 1 0 0 0 0 0 0 0 0999 V2000
0.0000 0.0000 0.0000 C 0 0 0 0 0
0.0000 0.0000 0.0000 C 0 0 0 0 0

1 2 1 0 0 0
M RAD 1 2 2
M END

9.4 SMILES extensions for radicals

Although radical structures can be represented in SMILES by specifying the hydrogens explicitly, e.g. [CH3] is
the methyl radical, some chemists have apparently felt the need to devise non-standard extensions that represent the
radical centre explicitly. Open Babel will recognize C[O.] as well as C[O] as the methoxy radical CH3O during
input, but the non-standard form is not supported in output.

90 Chapter 9. Radicals and SMILES extensions

Open Babel Documentation, Release 2.3.1

By default, radical centres are output in explict hydrogen form, e.g. C[CH2] for the ethyl radical. All the atoms will
be in explict H form, i.e. [CH3][CH2], if AddHydrogens() or the -h option has been specified. The output is always
standard SMILES, although other programs may not interpret radicals correctly.

Open Babel supports another SMILES extension for both input and output: the use of lower case atomic symbols to
represent radical centres. (This is supported on the ACCORD Chemistry Control and maybe elsewhere.) So the ethyl
radical is Cc and the methoxy radical is Co. This form is input transparently and can be output by using the -xr
option “radicals lower case”. It is a useful shorthand in writing radicals, and in many cases is easier to read since the
emphasis is on the radical centre rather than the number of hydrogens which is less chemically significant.

In addition, this extension interprets multiple lower case c without ring closure as a conju-
gated carbon chain, so that cccc is input as 1,3-butadiene. Lycopene (the red in tomatoes) is
Cc(C)cCCc(C)cccc(C)cccc(C)ccccc(C)cccc(C)cccc(C)CCcc(C)C (without the stereochemical
specifications). This conjugated chain form is not used on output - except in the standard SMILES aromatic form,
c1ccccc1 benzene.

It is interesting to note that the lower case extension actually improves the chemical representation in a few cases. The
allyl radical C3H5 would be conventionally [CH2]=[CH][CH2] (in its explict H form), but could be represented
as ccc with the extended syntax. The latter more accurately represents the symmetry of the molecule caused by
delocalisation.

This extension is not as robust or as carefully considered as standard SMILES and should be used with restraint.
A structure that uses c as a radical centre close to aromatic carbons can be confusing to read, and Open Babel’s
SMILES parser can also be confused. For example, it recognizes c1ccccc1c as the benzyl radical, but it doesn’t
like c1cc(c)ccc1. Radical centres should not be involved in ring closure: for cyclohexyl radical C1cCCCC1 is ok,
but c1CCCCC1 is not.

9.4. SMILES extensions for radicals 91

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ad3bab31bf64ff6cb18f6ee259b3b8c11

Open Babel Documentation, Release 2.3.1

92 Chapter 9. Radicals and SMILES extensions

Chapter 10
Contributing to Open Babel

10.1 Overview

Open Babel is developed using open, community-oriented development made possible by an active community –
developers, testers, writers, implementers and most of all users. No matter which ‘er’ you happen to be, or how much
time you can provide, you can make valuable contributions.

Not sure where to start? This section aims to give you some ideas.

Provide input

You can help us by:

• helping to answer questions on our mailing list

• suggesting new features

• suggesting needed file formats

• reporting bugs

Spread the word

If you find Open Babel useful, there’s a chance that others will also. You can help us by:

• promoting and citing Open Babel in talks and publications

• writing blog posts about Open Babel

• helping with documentation and our website

• building your own software on Open Babel

To get started, just send an email to our mailing list.

Code a storm

As an open source project, Open Babel has a very open development process. This means that many contributors have
helped with the project with a variety of help – some for long periods of time, and some with small, single changes.
All types of assistance has been valuable to the growth of the project over the years.

New developers are always very welcome to OpenBabel so if you’re interested, just send an email to the developer list
(join here) about what you would like to work on, or else we can come up with some ideas for areas where you could
contribute. Here are some possibilities:

93

https://lists.sourceforge.net/lists/listinfo/openbabel-discuss
http://sourceforge.net/tracker/?atid=428743&group_id=40728&func=browse
http://sourceforge.net/tracker/?atid=447448&group_id=40728&func=browse
http://sourceforge.net/tracker/?atid=428740&group_id=40728&func=browse
https://lists.sourceforge.net/lists/listinfo/openbabel-discuss
http://lists.sourceforge.net/lists/listinfo/openbabel-devel

Open Babel Documentation, Release 2.3.1

• Implement the latest algorithms described in the literature

• Add a new file format (see How to add a new file format)

• Perform ‘software archaeology’ (see Software Archaeology)

• Fix some bugs

• Add a requested feature

• Add support for additional datatypes

• Implement a feature from our roadmap

10.2 Developing Open Babel

Due to its open nature of its development, Open Babel contains code contributed by a wide variety of developers (see
Thanks). This section describes some general guidelines and “best practices” for code developers.

10.2.1 Developer Resources

For new and existing developers here are some useful resources:

• SourceForge project page

• Development version API documentation and documentation bugs

• Nightly build and test dashboard

• RSS feed for SVN commits at CIA.vc

10.2.2 Working with the Development Code

To download and update the latest version of the Open Babel source code, you need Subversion. Subversion (or SVN)
is the name of the project used to maintain the Open Babel version control repository. There are many clients for
Subversion, including command-line and GUI applications (for example, on Windows, TortoiseSVN). For more links,
see the Subversion website. There’s also a great book about using Subversion, which is available online.

Keeping up to date with Subversion

1. Check out the latest development version:

svn co https://openbabel.svn.sourceforge.net/svnroot/openbabel/openbabel/trunk

This creates a directory called trunk, which contains the latest source code from Open Babel.

2. Configure and compile this using CMake (see Compiling Open Babel).

3. After some time passes, and you want the latest bug fixes or new features, you may want to update your source
code. To do this, go into the trunk directory you created above, and type:

svn update

4. Do step (2) again.

94 Chapter 10. Contributing to Open Babel

http://sourceforge.net/tracker/?atid=428740&group_id=40728&func=browse
http://sourceforge.net/tracker/?atid=428743&group_id=40728&func=browse
http://sourceforge.net/tracker/?atid=451585&group_id=40728&func=browse
http://www.sf.net/projects/openbabel
http://openbabel.org/dev-api
http://openbabel.org/dev-api/docbuild.out
http://my.cdash.org/index.php?project=Open%20Babel
http://cia.vc/stats/project/OpenBabel
http://subversion.tigris.org/
http://tortoisesvn.tigris.org/
http://subversion.tigris.org/links.html
http://svnbook.red-bean.com/

Open Babel Documentation, Release 2.3.1

5. If, after updating, the compilation fails please report it to the Open Babel mailing list. In the meanwhile, if you
want to go back to a particular revision (that is, if you don’t want to use the latest one), just use svn info to
find the number of the current revision, and update to an earlier revision either by date or by revision number:

$ svn info
...
Revision: 1740
...
$ svn update -r 1735
(or)
$ svn update -r {2007-01-01}

Useful Subversion Commands

The following table suggests Subversion commands useful for Open Babel contributors. More documentation can be
found in the Official SVN Manual. In the following examples, repo should be replaced by the full URL to the Open
Babel subversion repository (https://openbabel.svn.sourceforge.net/svnroot/openbabel/openbabel).

Subversion Command What it does
svn co repo/trunk Check out the latest development version of Open Babel
svn update Update the current directory and subdirectories with any new changes
svn add filename Add the file filename to the repository
svn remove filename Remove the file filename (before a commit)
svn mv filename newname Move/rename the file filename to newname
svn commit Commit the changes to the central repository
svn diff Return a diff set of differences between the working copy and the central

repository
svn switch
repo/branches/foo

Switch the current working copy to a branch named foo

svn copy
repo/branches/foo

Create a branch named foo with the current working copy

Patches and Changesets

We’re human – it’s much easier to understand exactly what a patch is doing if it’s not trying to add 20 features or fix
20 bugs at once. (Hopefully there won’t be a need to fix 20 bugs!) If you want to add several features or fix several
bugs, break the patch up into one for each request. The faster someone can understand your patch, the faster it will go
into the source. Everyone benefits from faster, quality development.

Similarly, it’s sometimes necessary to revert the code to an older version because of bugs. Each set of changes
should only touch as few files as are needed. This makes it easier for others to review your changes and undo them
if necessarily. (Again, hopefully there’s never a need, but this is certainly a “best practice” to make life easier for
everyone.)

10.2.3 Monitoring Progress

Developers should keep track of changes made by others. Like most open source projects, development occurs in
many places by many contributors. Therefore it is important to keep up-to-date with your code repository and keep
on top of changes made by others. A bug you just found in the latest release may have already been fixed by someone
else.

• CIA Stats on Open Babel (provides a webpage and RSS feed for every change)

• OpenBabel-Updates mailing list (receives an e-mail message on every change)

10.2. Developing Open Babel 95

https://openbabel.svn.sourceforge.net/svnroot/openbabel/openbabel
http://cia.vc/stats/project/openbabel
http://lists.sourceforge.net/lists/listinfo/openbabel-updates

Open Babel Documentation, Release 2.3.1

In general, if you find that a recent update by another developer has introduced bugs or broken the code, please bring
it up with them ASAP. We have a policy of “if you break it, you fix it” to keep the source code repository always in a
working state.

10.2.4 Modular design of code base

Since version 2.0, Open Babel has had a modular structure. Particularly for the use of Open Babel as a chemical file
format converter, it aims to:

• separate the chemistry, the conversion process and the user interfaces, reducing, as far as possible, the depen-
dency of one on another.

• put all the code for each chemical format in one place (usually a single cpp file) and make the addition of new
formats simple.

• allow the format conversion of not just molecules, but also any other chemical objects, such as reactions.

Figure 10.1: The structure of the Open Babel codebase broken down into modules

The separate parts of the OpenBabel program are:

96 Chapter 10. Contributing to Open Babel

Open Babel Documentation, Release 2.3.1

• The Chemical core, which contains OBMol etc. and has all the chemical structure description and manipulation.
This bit is the heart of the application and its API can be used as a chemical toolbox. It has no input/output
capabilities.

• The Formats, which read and write to files of different types. These classes are derived from a common base
class, OBFormat, which is in the Conversion Control module. They also make use of the chemical routines in
the Chemical Core module. Each format file contains a global object of the format class. When the format is
loaded the class constructor registers the presence of the class with OBConversion. This means the formats are
plugins - new formats can be added without changing any framework code.

• Common Formats include OBMoleculeFormats and XMLBaseFormat from which most other formats (like
Format A and Format B in the diagram) are derived. Independent formats like Format C are also possible.

• The Conversion control, which also keeps track of the available formats, the conversion options and the input
and output streams. It can be compiled without reference to any other parts of the program. In particular, it
knows nothing of the Chemical core: mol.h is not included.

• The User interface, which may be a command line (in main.cpp), a Graphical User Interface(GUI), especially
suited to Windows users and novices, or may be part of another program which uses OpenBabel’s input and
output facilities. This depends only on the Conversion control module (obconversion.h is included), but not on
the Chemical core or on any of the Formats.

• The Fingerprint API, as well as being usable in external programs, is employed by the fastsearch and fingerprint
formats.

• The Fingerprints, which are bit arrays which describe an object and which facilitate fast searching. They are
also built as plugins, registering themselves with their base class OBFingerprint which is in the Fingerprint API.

• The Error handling can be used throughout the program to log and display errors and warnings (see below).

It is possible to build each box in the diagram as a separate DLL or shared library and the restricted dependencies can
help to limit the amount of recompilation. For the formats or the fingerprints built in this way it may be possible to use
only those whose DLL or so files are present when the program starts. Several formats or fingerprints may be present
in a single dynamic library.

Alternatively, and most commonly, the same source code can be built into a single executable. The restricted depen-
dencies still provide easier program maintenance.

This segregation means that a module can directly call code only in other modules connected to it by forward arrows.
So some discipline is needed when adding new code, and sometimes non-obvious work-arounds are necessary. For
instance, since the user interface doesn’t know about the Chemical Core, if it were necessary to set any parameters in
it, then this would have to be done through a pseudo format OBAPIInterface.

Sometimes one format needs to use code from another format, for example, rxnformat needs to read mol files with
code from mdlformat. The calling format should not use the code directly but should do it through a OBConversion
object configured with the appropriate helper format.

The objects passed between the modules in the diagram above are polymorphic OBBase pointers. This means that the
conversion framework can be used by any object derived from OBBase (which essentially means anything - chemical
or not). Most commonly these refer to OBMol objects, less commonly to OBReaction objects, but could be extended
to anything else without needing to change any existing code.

10.2.5 Error Handling and Warnings

The general philosophy of the Open Babel project is to attempt to gracefully recover from error conditions. Depending
on the severity of the error, a message may or may not be sent to the user – users can filter out developer debugging
messages and minor errors, but should be notified of significant problems.

Errors and warnings in Open Babel are handled internally by a flexible system motivated by a few factors:

10.2. Developing Open Babel 97

http://openbabel.org/dev-api/classOpenBabel_1_1OBBase.shtml

Open Babel Documentation, Release 2.3.1

• End users often do not wish to be deluged by debugging or other messages during operation.

• Other developers may wish to redirect or filter error/warning output (e.g., in a GUI).

• The operation of Open Babel should be open to developers and users alike to monitor an “audit trail” of opera-
tions on files and molecules, and debug the program and library itself when the need arises.

Multiple error/warning levels exist and should be used by code. These are defined in the obMessageLevel enum as
follows:

• obError – for critical errors (e.g., cannot read a file)

• obWarning – for non-critical problems (e.g., molecule appears empty)

• obInfo – for informative messages (e.g., file is a non-standard format)

• obAuditMsg – for messages auditing methods which destroy or perceive molecular data (e.g., kekulization,
atom typing, etc.)

• obDebug – for messages only useful for debugging purposes

The default filter level is set to obWarning, which means that users are told of critical errors, but not non-standard
formatting of input files.

A global error handler obErrorLog (an instance of OBMessageHandler) is defined and should be used as shown in the
API documentation for the OBMessageHandler class.

10.2.6 Lazy Evaluation

The OBMol::BeginModify() and OBMol::EndModify() calls are part of Open Babel’s lazy evaluation mechanism.

In some cases, code may desire to make a large number of changes to an OBMol object at once. Ideally, this should all
happen without triggering unintended perception routines. Therefore, the BeginModify() call marks the beginning
of such code, and EndModify() triggers any needed updates of lazy evaluation methods.

For example:

mol.BeginModify();
double x,y,z;
OBAtom *atom;
vector<string> vs;

for (i = 1; i <= natoms; i ++)
{

if (!ifs.getline(buffer,BUFF_SIZE))
return(false);

tokenize(vs,buffer);
if (vs.size() != 4)

return(false);

atom = mol.NewAtom();
x = atof((char*)vs[1].c_str());
y = atof((char*)vs[2].c_str());
z = atof((char*)vs[3].c_str());

atom->SetVector(x,y,z); //set coordinates
atom->SetAtomicNum(atoi(vs[0].c_str())); // set atomic number

}
mol.ConnectTheDots();
mol.PerceiveBondOrders();
mol.EndModify();

98 Chapter 10. Contributing to Open Babel

http://openbabel.org/dev-api/namespaceOpenBabel.shtml#acf195409ac7024002db5c178f20862d9
http://openbabel.org/dev-api/namespaceOpenBabel.shtml#a394eef44b3dd6a9174067715712c2d16
http://openbabel.org/dev-api/classOpenBabel_1_1OBMessageHandler.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMessageHandler.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#a1b5760b4c75b7631fffb54f84140b3e3
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ac32ffc23db124156a953e8e5cb923ccd

Open Babel Documentation, Release 2.3.1

This code reads in a list of atoms with XYZ coordinates and the atomic number in the first column (vs[0]). Since
hundreds or thousands of atoms could be added to a molecule, followed by creating bonds, the code is enclosed in a
BeginModify()/EndModify() pair.

10.3 Documentation

Documenting Open Babel is an important and ongoing task. As an open source project, code must be documented,
both for other developers to use the API and for others to follow your code. This includes clear documentation on the
interfaces of particular classes and methods (that is, the API documentation) but also tutorials and examples of using
the Open Babel library to accomplish clear tasks.

Beyond the documentation described above, as an open-source project involving many, many contributors, the internal
code should be clearly commented and easy to read (in English, preferably, since this is the common language of
developers on the project).

10.3.1 Adding New Code

The golden rule is write the documentation, then code to the specs.

You should never, ever start writing code unless you’ve specified, clearly and exactly, what your code will do. This
makes life easier for you (i.e., you know exactly what the code should do), and for others reading your code.

This mantra also facilitates writing tests (see Testing the Code).

10.3.2 Modifying Old Code

When modifying old code, please take a little time to improve the documentation of the function.

Even an “obvious” function must be documented, if for no other reason than to say, “This function does what you
think, and has no side effects.”

Take OBAtom::SetAtomicNum() - should be “obvious”, right? Wrong.

• Does it affect the charge?

• The spin multiplicity?

• The implicit valence?

• The hybridization?

• What happens if I do SetHybridization(3) and then SetAtomicNum(1)?

• Does the molecule have to be in the modify state?

• If the molecule is not in the modify state, is it put into the modify state by SetAtomicNum()?

• Does SetAtomicNum() cause a recomputation of aromaticity?

10.3.3 ChangeLog entries

The ChangeLog file is used to maintain an abbreviated history of changes to the code by all users. Please add a
ChangeLog entry to any patch and make sure to keep it up to date as you commit changes to the source code. The
format should be mostly self-explanatory.

In particular, please include a notation of any file you have changed. This makes it easy for others to track which
changes may have added new functionality, fixed bugs, or inadvertently caused errors.

10.3. Documentation 99

http://openbabel.org/api
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml#a573a9f96a971854938ab2db5eb4d4851
http://www.gnu.org/software/guile/changelogs/guile-changelogs_3.htmlT1	extbar {}format

Open Babel Documentation, Release 2.3.1

10.3.4 User documentation and tutorials

There’s no point spending time adding new features to Open Babel unless you describe how to use them and give
examples. The best place to do this is in the user documentation...which you’re reading right now.

This documentation is automatically generated from text files in a simple markup language (reStructuredText) using
the Sphinx documentation system. This allows us to generate web pages, PDF files, and even ePub eBooks all from
the same source (which is currently maintained at BitBucket).

If you notice any errors or feel like adding a section, please let us know at openbabel-devel.

10.4 Testing the Code

Testing is another important ongoing task for any large code base such as Open Babel. The following documentation
is intended to give some idea as to the types of tests used by Open Babel and various tools available for debugging and
testing.

10.4.1 Types of Tests

Unit tests These tests cover specific functionality of the library.

Unit tests attempt to show that functions work as indicated (i.e. pass) and fail properly on unacceptable input.
They are run after building the code by calling make test. Ideally these tests should cover every public
function in the Open Babel API. Adding more tests to provide greater coverage is a high priority.

Regression tests These tests are associated with particular bug fixes.

A regression test ensures that a bug, once fixed, stays fixed. If you have spent time fixing a bug, it’s worthwhile
to write an associated regression test. In fact, writing the test first is to a good way to prove that you have in fact
fixed the problem.

Roundtrip tests Test file translation.

These are run from the test file repository and test file translation to/from file formats.

“Dogfood” tests Using the development code.

Many of the developers use the current development snapshots for their daily use. This is sometimes called
eating your own dog food and ensures that bugs which impact common functionality are caught quickly.

Scripting language tests Perl and Python unit tests

Both the Perl and Python language bindings have additional tests to ensure that these scripting language modules
work. These tests not only stress the scripting modules themselves, but also the underlying library.

10.4.2 Test dashboard

We have set up a test dashboard with nightly builds of Open Babel for several compilers and operating systems.
The dashboard allows problems with particular SVN commits to be easily identified. Developers should check the
dashboard after committing code and check whether the test suite has failed.

We thank KitWare for providing dashboard resources.

10.4.3 Tools for software testing

A variety of tools can be used to help diagnose problems and debug errors:

100 Chapter 10. Contributing to Open Babel

http://sphinx.pocoo.org/
http://bitbucket.org/baoilleach/openbabel-user-docs
https://lists.sourceforge.net/lists/listinfo/openbabel-devel
http://my.cdash.org/index.php?project=Open+Babel
http://www.kitware.com

Open Babel Documentation, Release 2.3.1

Debuggers

gdb (the GNU project debugger) is a basic debugger on UNIX systems.

• GDB can be run on the babel program like so: ./libtool gdb src/babel

• Several GDB commands are highly useful, including btwhich gives a full backtrace of program execution upon
error.

• The use of code optimization when compiling can make debugging with GDB and other debuggers extremely
difficult. If needed, make sure Open Babel has been compiled, e.g. with CXXFLAGS="-g -O0" on UNIX.

Memory Checkers

Unlike languages like Java, which handle memory allocation and deletion, C++ requires that all code handle memory.
In particular, this means if you use new or malloc or similar calls, you must be sure the memory will be properly freed
when no longer needed. So-called “memory leaks” are cases where memory has been allocated, but never properly
freed and are significant bugs in Open Babel.

Several tools can help find such errors:

• valgrind works on several platforms by carefully monitoring each memory access and allocation.

• LeakTracer works on a range of platforms by using C++ operator overloading.

• MallocDebug (Mac OS X only) is a graphic front-end to monitor memory use and incorrect memory usage.

• Visual Leak Detector (Windows/MSVC only) is a very easy way to find memory leaks.

Code Profiling

To improve the speed of execution, it is often helpful to rely on tools that monitor the frequency and duration of
function calls. This information can help to identify performance bottlenecks.

• gprof is used with the GCC compilers to produce profiling data including the number of calls to routines and the
amount of time spent executing.

• Shark/Saturn (Mac OS X only) is a graphical front-ends to gprof and can sample programs while running.

• callgrind is run through the valgrind virtual machine using valgrind --tool=callgrind ./myexe.
This works best (although slower) if the executable is compiled with debugging information.

C++ Unscrambler

The symbols used by C++ compilers and exposed by debugging, profiling, and memory tools are “scrambled.” The
c++filt program can be used to decode the symbol to a human-readable form.

10.5 Software Archaeology

In any large software project, some parts of the code are revised and kept up-to-date more than others.

Conversely, some parts of the code begin to fall behind – the code may be poorly tested, poorly documented, and not
always up to best practices.

With that in mind, the following sections describe the important task of software archeology – diving in to older parts
of code and bringing them up to date. Whenever editing a file, please keep these in mind.

10.5. Software Archaeology 101

http://www.gnu.org/software/gdb/
http://www.valgrind.org/
http://www.andreasen.org/LeakTracer/
http://developer.apple.com/documentation/Performance/Conceptual/ManagingMemory/Articles/FindingLeaks.html
http://vld.codeplex.com/
http://www.gnu.org/software/gprof/
http://www.valgrind.org/
http://sources.redhat.com/binutils/docs-2.15/binutils/c--filt.html

Open Babel Documentation, Release 2.3.1

10.5.1 Documentation and Code Readability

• Add clear documentation for every public function (see Documentation).

• Add clear comments on the internal operation of functions so that anyone can read through the code quickly.

– If you’re not sure what a function does, e-mail the openbabel-devel list and it can be worked out.

• Mark functions which should be publicly visible and functions which are only useful internally. Many methods
are not particularly useful except inside the library itself.

• Improve code indentation

– It seems like a minor point, but the format of your code is important. As open source software, your code
is read by many, many people.

– Different contributions have often had different indentation styles. Simply making the code indentation
consistent across an entire file makes the code easier to read.

– The current accepted scheme for Open Babel is a default indent of two spaces, and use of spaces instead
of tabs.

– For tips on changing your editor to use this indentation style, please e-mail the openbabel-devel list.

• Delete code which is commented out. The SVN version control system maintains history, so if we need it later,
we can go back and get that code. Dead code like this simply makes it harder to read the important code!

• Marking areas of code which use OBAtom::GetIdx() or other accesses to atom indexes, which may break when
atom indexing changes.

10.5.2 Code Maintenance

• Minimize #if/#endif conditional compilation. Some is required for portability, but these should be mini-
mized where possible. If there seems to be some magic #define which accesses parts of the file, it’s probably
dead code. As above, dead code makes it harder to maintain and read everything else.

• Removing calls to cout, cerr, STDOUT, perror etc. These should use the global error reporting code.

• Minimize warnings from compilers (e.g., GCC flags -Wextra -Wall). Sometimes these are innocuous, but
it’s usually better to fix the problems before they become bugs.

• Use static code analysis tools to find potential bugs in the code and remove them.

• Insure proper use of atom and bond iterators, e.g., FOR_ATOMS_OF_MOL rather than atom or bond index
access, which will break if indexing changes.

Patches and contributions towards any of these tasks will be greatly appreciated.

102 Chapter 10. Contributing to Open Babel

https://lists.sourceforge.net/lists/listinfo/openbabel-devel
https://lists.sourceforge.net/lists/listinfo/openbabel-devel
http://openbabel.org/dev-api/classOpenBabel_1_1OBAtom.shtml#a80892a7fdfc7180a85160279c1186952

Chapter 11
Adding plugins

Open Babel uses a plugin architecture for file formats, ‘operations’, charge models, forcefields, fingerprints and de-
scriptors. The general idea behind plugins is described on Wikipedia. When you start an application that uses the
Open Babel library, it searches for available plugins and loads them. This means, for example, that plugins could be
distributed separately to the Open Babel distribution.

In fact, even the plugin types are themselves plugins; this makes it easy to add new categories of plugin. The different
types of plugins can be listed using:

C:\>babel -L
charges
descriptors
fingerprints
forcefields
formats
loaders
ops

To list the plugins of a particular type, for example, charge models, just specify the plugin type:

C:\>babel -L charges
gasteiger Assign Gasteiger-Marsili sigma partial charges
mmff94 Assign MMFF94 partial charges
qeq Assign QEq (charge equilibration) partial charges (Rappe and Goddard, 199
1)
qtpie Assign QTPIE (charge transfer, polarization and equilibration) partial
charges (Chen and Martinez, 2007)

To add a new plugin of any type, the general method is very simple:

1. Make a copy of an existing plugin .cpp file

2. Edit it so that it does what you want

3. Add the name of the .cpp file to the appropriate CMakeLists.txt.

The following sections describe in depth how to add support for a new file format or operation to Open Babel. Re-
member that if you do add a new plugin, please contribute the code back to the Open Babel project.

11.1 How to add a new file format

Adding support for a new file format is a relatively easy process, particularly with Open Babel 2.3 and later. Here are
several important steps to remember when developing a format translator:

1. Create a file for your format in src/formats/ or src/formats/xml/ (for XML-based formats). Ideally,
this file is self-contained although several formats modules are compiled across multiple source code files.

103

http://en.wikipedia.org/wiki/Plug-in_%28computing%29

Open Babel Documentation, Release 2.3.1

2. Add the name of the new .cpp file to an appropriate place in src/formats/CMakeLists.txt. It will now
be compiled as part of the build process.

3. Take a look at other file format code, particularly exampleformat.cpp, which contains a heavily-annotated
description of writing a new format. XML formats need to take a different approach; see the code in
xcmlformat.cpp or pubchemformat.cpp.

4. When reading in molecules (and thus performing a lot of molecular modifications) call OBMol::BeginModify()
at the beginning and OBMol::EndModify() at the end. This will ensure that perception routines do not run while
you read in a molecule and are reset after your code finishes (see Lazy Evaluation).

5. Currently, lazy perception does not include connectivity and bond order assignment. If your format does
not include bonds, make sure to call OBMol::ConnectTheDots() and OBMol::PerceiveBondOrders() after OB-
Mol::EndModify() to ensure bonds are assigned.

6. Consider various input and output options that users can set from the command-line or GUI. For example, many
quantum mechanics formats (as well as other formats which do not recognize bonds) offer the following options:

-as Call only OBMol::ConnectTheDots() (single bonds only)

-ab No bond perception

7. Make sure to use generic data classes like OBUnitCell and others as appropriate. If your format stores any sort
of common data types, consider adding a subclass of OBGenericData for use by other formats and user code.

8. Please make sure to add several example files to the test set repository. Ideally, these should work several areas
of your import code – in the end, the more robust the test set, the more stable and useful Open Babel will be. The
test files should include at least one example of a correct file and one example of an invalid file (i.e., something
which will properly be ignored and not crash babel).

9. Make sure to document your format using the string returned by Description(). At the minimum this
should include a description of all options, along with examples. However, the more information you add (e.g.
unimplemented features, applications of the format, and so forth) the more confident users will be in using it.

10. That’s it! Contact the openbabel-discuss mailing list with any questions, comments, or to contribute your new
format code.

11.2 Adding new operations and options

The babel command line has the form:

babel inputfile [outputfile] [options]

There are several types of options:

Options that control the conversion process For example -i, -o and -m

Options specific to particular input or output formats These are specified with the -a and -x prefixes

General options These usually operate on a molecule after it has been read by the input format and
before it has been written by the output format.

The ones of interest here are the general options. These can be single letter options like -c (which centers coordinates),
or multi-character options like --separate (which makes separate molecules from disconnected fragments). The
ones mentioned are hardwired into the code, but it is possible to define new options that work in a similar way. This is
done using the OBOp class.

104 Chapter 11. Adding plugins

http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#a1b5760b4c75b7631fffb54f84140b3e3
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ac32ffc23db124156a953e8e5cb923ccd
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#a31d05972f7454e791641c4a7d0071d12
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ac749cfb04173f6f35ef64b1ac1d87178
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ac32ffc23db124156a953e8e5cb923ccd
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#ac32ffc23db124156a953e8e5cb923ccd
http://openbabel.org/dev-api/classOpenBabel_1_1OBMol.shtml#a31d05972f7454e791641c4a7d0071d12
http://openbabel.org/dev-api/classOpenBabel_1_1OBUnitCell.shtml
http://openbabel.org/dev-api/classOpenBabel_1_1OBGenericData.shtml
http://lists.sourceforge.net/lists/listinfo/openbabel-discuss
http://openbabel.org/dev-api/classOpenBabel_1_1OBOp.shtml

Open Babel Documentation, Release 2.3.1

11.2.1 The OBOp class

The name OBOp is intended to imply an operation as well as an option. This is a plugin class, which means that new
ops are easily added without a need to alter any existing code.

The ops that are installed can be found using:

babel -L ops

or in the plugins menu item in the GUI. An example is the --gen3D option, which adds 3D coordinates to a molecule:

1 class OpGen3D : public OBOp
2 {
3 public:
4 OpGen3D(const char* ID) : OBOp(ID, false){};
5 const char* Description(){ return "Generate 3D coordinates"; }
6

7 virtual bool WorksWith(OBBase* pOb)const
8 { return dynamic_cast<OBMol*>(pOb)!=NULL; }
9 virtual bool Do(OBBase* pOb, OpMap* pmap, const char* OptionText);

10 };
11

12 OpGen3D theOpGen3D("gen3D");
13

14 bool OpGen3D::Do(OBBase* pOb, OpMap* pmap, const char* OptionText)
15 {
16 OBMol* pmol = dynamic_cast<OBMol*>(pOb);
17 if(!pmol)
18 return false;
19

20 OBBuilder builder;
21 builder.Build(*pmol);
22 pmol->SetDimension(3);
23

24 return true;
25 }

The real work is done in the Do function, but there is a bit of boilerplate code that is necessary.

Line 4: The constructor calls the base class constructor, which registers the class with the system. There could be
additional parameters on the constructor if necessary, provided the base constructor is called in this way. (The false
parameter value is to do with setting a default instance which is not relevant here.)

Line 5: It is necessary to provide a description. The first line is used as a caption for the GUI checkbox. Subsequent
lines are shown when listed with the verbose option.

Line 7: WorksWith() identifies the type of object. Usually this is a molecule (OBMol) and the line is used as shown.
The function is used by the GUI to display the option only when it is relevant.

The OBOp base class doesn’t know about OBMol or OBConversion and so it can be used with any kind of
object derived from OBBase (essentially anything). Although this means that the dependencies between
one bit of the program and another are reduced, it does lead to some compromises, such as having to code
WorksWith() explicitly rather than as a base class default.

Line 12: This is a global instance which defines the Id of the class. This is the option name used on the command line,
preceded by --.

Line 14: The Do() function carries out the operation on the target object. It should normally return true. Returning
false prevents the molecule being sent to the output format. Although this means that it is possible to use an OBOp
class as a filter, it is better to do this using the --filter option.

11.2. Adding new operations and options 105

http://openbabel.org/dev-api/classOpenBabel_1_1OBOp.shtml

Open Babel Documentation, Release 2.3.1

Any other general options specified on the command line (or the GUI) can be accessed by calling find on the parameter
pmap. For example, to determine whether the -c option was also specified:

OpMap::const_iterator iter = pmap->find("c");
if(iter!=pmap->end())
do something;

106 Chapter 11. Adding plugins

Chapter 12
Supported File Formats and Options

Chemists are a very imaginative group. They keep thinking of new file formats.

OpenBabel has support for 118 formats in total. It can read 88 formats and can write 89 formats. These formats are
identified by a name (for example, ShelX format) and one or more short codes (in this case, ins or res). The
titles of each section provide this information (for example, ShelX format (ins, res)).

The short code is used when using obabel or babel to convert files from one format to another:

obabel -iins myfile.ins -ocml

converts from ShelX format to Chemical Markup Language (in this case, no output file is specified and the output will
be written to screen [stdout]). In fact, if the filename extension is the same as the file format code, then there is no
need to specify the code. In other words, the following command will behave identically:

babel myfile.ins -ocml

As well as the general conversion options described elsewhere (see Options), each format may have its own options
for either reading or writing. For example, the ShelX format has two options that affect reading of files, s and b. To
set a file format option:

• For Read Options, precede the option with -a at the command line

• For Write Options, precede the option with -x

Mnemonic

To remember the correct switch for read or write options, think of “raw eggs”: read is a, write is x (“eggs”).

For example, if we wanted to set all bonds to single bonds when reading a ShelX format file, we could specify the s
option:

babel -iins myfile.ins -ocml -as

More than one read (or write) option can be specified (e.g. -ax -ay -az). babel (but not obabel) also allows you
to specify several options together (e.g. as -axyz).

Developer Note To set the file formats for an OBConversion object, use SetInAndOutFormat(InCode,
OutCode). To set a Read Option s, use SetOptions("s", OBConversion::INOPTIONS).

12.1 Common cheminformatics formats

12.1.1 Canonical SMILES format (can)

A canonical form of the SMILES linear text format

107

Open Babel Documentation, Release 2.3.1

The SMILES format is a linear text format which can describe the connectivity and chirality of a molecule. Canonical
SMILES gives a single ‘canonical’ form for any particular molecule.

See Also:

The “regular” SMILES format (smi, smiles) gives faster output, since no canonical numbering is performed.

Write Options

a Output atomclass like [C:2], if available

h Output explicit hydrogens as such

i Do not include isotopic or chiral markings

n No molecule name

r Radicals lower case eg ethyl is Cc

t Molecule name only

f <atomno> Specify the first atom

This atom will be used to begin the SMILES string.

l <atomno> Specify the last atom

The output will be rearranged so that any additional SMILES added to the end
will be attached to this atom. See the SMILES format (smi, smiles) for more
information.

12.1.2 Chemical Markup Language (cml, mrv)

An XML format for interchange of chemical information.

This format writes and reads CML XML files. To write CML1 format rather than the default CML2, use the -x1
option. To write the array form use -xa and to specify all hydrogens using the hydrogenCount attribute on atoms use
-xh.

Crystal structures are written using the <crystal>, <xfract> (,...etc.) elements if the OBMol has a OBGeneric-
DataType::UnitCell data.

All these forms are handled transparently during reading. Only a subset of CML elements and attributes are recognised,
but these include most of those which define chemical structure, see below.

The following are read:

• Elements:

– molecule, atomArray, atom, bondArray, bond, atomParity, bondStereo

– name, formula, crystal, scalar (contains crystal data)

– string, stringArray, integer, integerArray, float floatArray, builtin

• Attributes:

– On <molecule>: id, title, ref(in CMLReact)

– On <atom>: id, atomId, atomID, elementType, x2, y2, x3, y3, z3, xy2, xyz3, xFract, yFract, zFract,
xyzFract, hydrogenCount, formalCharge, isotope, isotopeNumber, spinMultiplicity, radical(from Marvin),
atomRefs4 (for atomParity)

– On <bond>: atomRefs2, order, CML1: atomRef, atomRef1, atomRef2

108 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Read Options

2 read 2D rather than 3D coordinates if both provided

Write Options

1 write CML1 (rather than CML2)

a write array format for atoms and bonds

A write aromatic bonds as such, not Kekule form

h use hydrogenCount for all hydrogens

m write metadata

x omit XML and namespace declarations

c continuous output: no formatting

p write properties

N <prefix> add namespace prefix to elements

Comments

In the absence of hydrogenCount and any explicit hydrogen on an atom, implicit hydrogen is assumed to be present
appropriate to the radical or spinMultiplicity attributes on the atom or its normal valency if they are not present.

The XML formats require the XML text to be well formed but generally interpret it fairly tolerantly. Unrecognised
elements and attributes are ignored and there are rather few error messages when any required structures are not found.
This laxity allows, for instance, the reactant and product molecules to be picked out of a CML React file using CML.
Each format has an element which is regarded as defining the object that OpenBabel will convert. For CML this is
<molecule>. Files can have multiple objects and these can be treated the same as with other multiple object formats
like SMILES and MDL Molfile. So conversion can start at the nth object using the -fn option and finish before the
end using the -ln option. Multiple object XML files also can be indexed and searched using FastSearch, although
this has not yet been extensively tested.

12.1.3 InChI format (inchi)

IUPAC/NIST molecular identifier

Read Options

X <Option string> List of InChI options

n molecule name follows InChI on same line

a add InChI string to molecule name

Write Options

Standard InChI is written unless certain InChI options are used

K output InChIKey only

t add molecule name after InChI

12.1. Common cheminformatics formats 109

Open Babel Documentation, Release 2.3.1

w ignore less important warnings

These are: ‘Omitted undefined stereo’ ‘Charges were rearranged’ ‘Proton(s)
added/removed’ ‘Metal was disconnected’

a output auxiliary information

l display InChI log

r recalculate InChI; normally an input InChI is reused

s recalculate wedge and hash bonds(2D structures only)

Uniqueness options (see also --unique and --sort which are more versa-
tile)

u output only unique molecules

U output only unique molecules and sort them

e compare first molecule to others

This can also be done with InChICompare format:

babel first.smi second.mol third.cml -ok

T <param> truncate InChI according to various parameters

See below for possible truncation parameters.

X <Option string> Additional InChI options

See InChI documentation. These options should be space delimited in a single
quoted string.

• Structure perception (compatible with stdInChI): NEWPSOFF,
DoNotAddH, SNon

• Stereo interpretation (produces non-standard InChI): SRel, SRac, SUCF,
ChiralFlagON, ChiralFlagOFF

• InChI creation options (produces non-standard InChI): SUU, SLUUD,
FixedH, RecMet, KET, 15T

The following options are for convenience, e.g. -xF but produce non-standard
InChI.

F include fixed hydrogen layer

M include bonds to metal

Comments

Truncation parameters used with -xT:

/formula formula only

/connect formula and connectivity only

/nostereo ignore E/Z and sp3 stereochemistry

/sp3 ignore sp3 stereochemistry

/noEZ ignore E/Z steroeochemistry

/nochg ignore charge and protonation

110 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

/noiso ignore isotopes

Note that these can also be combined, e.g. /nochg/noiso

12.1.4 InChIKey (inchikey)

A hashed representation of the InChI.

The InChIKey is a fixed-length (27-character) condensed digital representation of an InChI, developed to make it easy
to perform web searches for chemical structures.

An InChIKey consists of 14 characters (derived from the connectivity layer in the InChI), a hyphen, 9 characters
(derived from the remaining layers), a character indicating the InChI version, a hyphen and a final checksum character.
Contrast the InChI and InChIKey of the molecule represented by the SMILES string CC(=O)Cl:

obabel -:CC(=O)Cl -oinchi
InChI=1S/C2H3ClO/c1-2(3)4/h1H3

obabel -:CC(=O)Cl -oinchikey
WETWJCDKMRHUPV-UHFFFAOYSA-N

This is the same as using -oinchi -xK and can take the same options as the InChI format (see InChI format (inchi)):

obabel -:CC(=O)Cl -oinchi -xK
WETWJCDKMRHUPV-UHFFFAOYSA-N

Note that while a molecule with a particular InChI will always give the same InChIKey, the reverse is not true; there
may exist more than one molecule which have different InChIs but yield the same InChIKey.

Note: This is a write-only format.

12.1.5 MDL MOL format (mol, mdl, sdf, sd)

Reads and writes V2000 and V3000 versions

Read Options

s determine chirality from atom parity flags

The default setting is to ignore atom parity and work out the chirality based on
the bond stereochemistry.

T read title only

P read title and properties only

When filtering an sdf file on title or properties only, avoid lengthy chemical inter-
pretation by using the T or P option together with the copy format.

Write Options

3 output V3000 not V2000 (used for >999 atoms/bonds)

m write no properties

w use wedge and hash bonds from input (2D structures only)

12.1. Common cheminformatics formats 111

Open Babel Documentation, Release 2.3.1

A output in Alias form, e.g. Ph, if present

12.1.6 Protein Data Bank format (pdb, ent)

Read Options

s Output single bonds only

b Disable bonding entirely

c Ignore CONECT records

12.1.7 SMILES format (smi, smiles)

A linear text format which can describe the connectivity and chirality of a molecule

Open Babel implements the OpenSMILES specification.

It also implements an extension to this specification for radicals.

Note that the l <atomno> option, used to specify a “last” atom, is intended for the generation of SMILES strings
to which additional atoms will be concatenated. If the atom specified has an explicit H within a bracket (e.g. [nH] or
[C@@H]) the output will have the H removed along with any associated stereo symbols.

See Also:

The Canonical SMILES format (can) produces a canonical representation of the molecule in SMILES format. This is
the same as the c option below but may be more convenient to use.

Write Options

a Output atomclass like [C:2], if available

c Output in canonical form

h Output explicit hydrogens as such

i Do not include isotopic or chiral markings

n No molecule name

r Radicals lower case eg ethyl is Cc

t Molecule name only

x append X/Y coordinates in canonical-SMILES order

C ‘anti-canonical’ random order (mostly for testing)

f <atomno> Specify the first atom

This atom will be used to begin the SMILES string.

l <atomno> Specify the last atom

The output will be rearranged so that any additional SMILES added to the end
will be attached to this atom.

112 Chapter 12. Supported File Formats and Options

http://opensmiles.org

Open Babel Documentation, Release 2.3.1

12.1.8 Sybyl Mol2 format (ml2, sy2, mol2)

Write Options

l Output ignores residue information (only ligands)

12.2 Utility formats

12.2.1 Compare molecules using InChI (k)

A utility format that allows you to compare molecules using their InChIs

The first molecule is compared with the rest, e.g.:

babel first.smi second.mol third.cml -ok

This is the same as using -oinchi -xet and can take the same options as InChI format (see InChI format (inchi)).

Note: This is a write-only format.

12.2.2 Copy raw text (copy)

A utility format for exactly copying the text of a chemical file format

This format allows you to filter molecules from multimolecule files without the risk of losing any additional informa-
tion they contain, since no format conversion is carried out.

Warning: Currently not working correctly for files with Windows line endings.

Example:

Extract only structures that include at least one aromatic carbon (by matching the SMARTS pattern [c]):

babel -s ’[c]’ database.sdf -ocopy new.sd

Note: XML files may be missing non-object elements at the start or end and so may no longer be well formed.

Note: This is a write-only format.

12.2.3 Fastsearch format (fs)

Fingerprint-aided substructure and similarity searching

Writing to the fs format makes an index of a multi-molecule datafile:

babel dataset.sdf -ofs

12.2. Utility formats 113

Open Babel Documentation, Release 2.3.1

This prepares an index dataset.fs with default parameters, and is slow (~30 minutes for a 250,000 molecule file).

However, when reading from the fs format searches are much faster, a few seconds, and so can be done interactively.

The search target is the parameter of the -s option and can be slightly extended SMILES (with [#n] atoms and ~
bonds) or the name of a file containing a molecule.

Several types of searches are possible:

• Identical molecule:

babel index.fs outfile.yyy -s SMILES exact

• Substructure:

babel index.fs outfile.yyy -s SMILES or
babel index.fs outfile.yyy -s filename.xxx

where xxx is a format id known to OpenBabel, e.g. sdf

• Molecular similarity based on Tanimoto coefficient:

babel index.fs outfile.yyy -at15 -sSMILES # best 15 molecules
babel index.fs outfile.yyy -at0.7 -sSMILES # Tanimoto >0.7
babel index.fs outfile.yyy -at0.7,0.9 -sSMILES
Tanimoto >0.7 && Tanimoto < 0.9

The datafile plus the -ifs option can be used instead of the index file.

NOTE that the datafile MUST NOT be larger than 4GB. (A 32 pointer is used.)

See Also:

Molecular fingerprints and similarity searching

Read Options

t <num> Do similarity search:<num>mols or <num> as min Tanimoto

a Add Tanimoto coeff to title in similarity search

l <num> Maximum number of candidates. Default<4000>

e Exact match

Alternative to using exact in -s parameter, see above

n No further SMARTS filtering after fingerprint phase

Write Options

f <num> Fingerprint type

If not specified, the default fingerprint (currently FP2) is used

N <num> Fold fingerprint to <num> bits

u Update an existing index

114 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.2.4 Fingerprint format (fpt)

Generate or display molecular fingerprints.

This format constructs and displays fingerprints and (for multiple input objects) the Tanimoto coefficient and whether
a superstructure of the first object.

A list of available fingerprint types can be obtained by:

babel -L fingerprints

The current default type FP2 is is of the Daylight type, indexing a molecule based on the occurrence of linear fragment
up to 7 atoms in length. To use a fingerprint type other than the default, use the -xf option, for example:

babel infile.xxx -ofpt -xfFP3

For a single molecule the fingerprint is output in hexadecimal form (intended mainly for debugging).

With multiple molecules the hexadecimal form is output only if the -xh option is specified. But in addition the
Tanimoto coefficient between the first molecule and each of the subsequent ones is displayed. If the first molecule is
a substructure of the target molecule a note saying this is also displayed.

The Tanimoto coefficient is defined as:

Number of bits set in (patternFP & targetFP) / Number of bits in (patternFP | targetFP)

where the boolean operations between the fingerprints are bitwise.

The Tanimoto coefficient has no absolute meaning and depends on the design of the fingerprint.

Use the -xs option to describe the bits that are set in the fingerprint. The output depends on the fingerprint type.
For Fingerprint FP4, each bit corresponds to a particular chemical feature, which are specified as SMARTS patterns
in SMARTS_InteLigand.txt, and the output is a tab-separated list of the features of a molecule. For instance, a
well-known molecule gives:

Primary_carbon: Carboxylic_acid: Carboxylic_ester: Carboxylic_acid_derivative:
Vinylogous_carbonyl_or_carboxyl_derivative: Vinylogous_ester: Aromatic:
Conjugated_double_bond: C_ONS_bond: 1,3-Tautomerizable: Rotatable_bond: CH-acidic:

For the path-based fingerprint FP2, the output from the -xs option is instead a list of the chemical fragments used to
set bits, e.g.:

$ obabel -:"CCC(=O)Cl" -ofpt -xs -xf FP2
>
0 6 1 6 <670>
0 6 1 6 1 6 <260>
0 8 2 6 <623>
...etc

where the first digit is 0 for linear fragments but is a bond order for cyclic fragments. The remaining digits indicate
the atomic number and bond order alternatively. Note that a bond order of 5 is used for aromatic bonds. For example,
bit 623 above is the linear fragment O=C (8 for oxygen, 2 for double bond and 6 for carbon).

Note: This is a write-only format.

Write Options

f <id> fingerprint type

12.2. Utility formats 115

Open Babel Documentation, Release 2.3.1

N <num> fold to specified number of bits, 32, 64, 128, etc.

h hex output when multiple molecules

o hex output only

s describe each set bit

u describe each unset bit

12.2.5 General XML format (xml)

Calls a particular XML format depending on the XML namespace.

This is a general XML “format” which reads a generic XML file and infers its format from the namespace as given
in a xmlns attribute on an element. If a namespace is recognised as associated with one of the XML formats in Open
Babel, and the type of the object (e.g. a molecule) is appropriate to the output format then this is used to input a single
object. If no namespace declaration is found the default format (currently CML) is used.

The process is repeated for any subsequent input so that it is possible to input objects written in several different
schemas from the same document. The file CMLandPubChem.xml illustrates this and contains molecules in both
CML and PubChem formats.

This implementation uses libxml2.

Note: This is a read-only format.

Read Options

n Read objects of first namespace only

12.2.6 Generic Output file format (dat, output, out, log)

Automatically detect and read computational chemistry output files

This format can be used to read ADF, Gaussian, GAMESS, PWSCF, Q-Chem, MOPAC, etc. output files by automati-
cally detecting the file type.

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.2.7 MolPrint2D format (mpd)

An implementation of the circular fingerprint MolPrint2D

MolPrint2D is an atom-environment fingerprint developed by Bender et al [bmg2004] which has been used in QSAR
studies and for measuring molecular similarity.

116 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

The format of the output is as follows:

[Molec_name]\t[atomtype];[layer]-[frequency]-[neighbour_type];

Example for the SMILES string CC(=O)Cl:

acid chloride 1;1-1-2;2-1-9;2-1-15; 2;1-1-1;1-1-9;1-1-15;
9;1-1-2;2-1-1;2-1-15; 15;1-1-2;2-1-1;2-1-9;

Note: This is a write-only format.

Write Options

n prefix molecule names with name of file

c use XML style separators instead

i use IDX atom types of babel internal

12.2.8 Multilevel Neighborhoods of Atoms (MNA) (mna)

Iteratively generated 2D descriptors suitable for QSAR

Multilevel Neighborhoods of Atoms (MNA) descriptors are 2D molecular fragments suitable for use in QSAR mod-
elling [fpbg99]. The format outputs a complete descriptor fingerprint per molecule. Thus, a 27-atom (including
hydrogen) molecule would result in 27 descriptors, one per line.

MNA descriptors are generated recursively. Starting at the origin, each atom is appended to the descriptor immediately
followed by a parenthesized list of its neighbours. This process iterates until the specified distance from the origin,
also known as the depth of the descriptor.

Elements are simplified into 32 groups. Each group has a representative symbol used to stand for any element in that
group:

Type Elements
H H
C C
N N
O O
F F
Si Si
P P
S S
Cl Cl
Ca Ca
As As
Se Se
Br Br
Li Li, Na
B B, Re
Mg Mg, Mn
Sn Sn, Pb
Te Te, Po
I I, At

Continued on next page

12.2. Utility formats 117

Open Babel Documentation, Release 2.3.1

Table 12.1 – continued from previous page
Os Os, Ir
Sc Sc, Ti, Zr
Fe Fe, Hf, Ta
Co Co, Sb, W
Sr Sr, Ba, Ra
Pd Pd, Pt, Au
Be Be, Zn, Cd, Hg
K K, Rb, Cs, Fr
V V, Cr, Nb, Mo, Tc
Ni Ni, Cu, Ge, Ru, Rh, Ag, Bi
In In, La, Ce, Pr, Nd, Pm, Sm, Eu
Al Al, Ga, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Tl
R R, He, Ne, Ar, Kr, Xe, Rn, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr, Db, Jl

Acyclic atoms are preceded by a hyphen “-” mark.

Here’s the multi-level neighborhood for the molecule represented by the SMILES string CC(=O)Cl:

The contents of this file were derived from
Title = acid chloride
-C(-H(-C)-H(-C)-H(-C)-C(-C-O-Cl))
-C(-C(-H-H-H-C)-O(-C)-Cl(-C))
-O(-C(-C-O-Cl))
-Cl(-C(-C-O-Cl))
-H(-C(-H-H-H-C))
-H(-C(-H-H-H-C))
-H(-C(-H-H-H-C))

Note: This is a write-only format.

Write Options

L <num> Levels (default = 2)

12.2.9 Open Babel molecule report (molreport)

Generates a summary of the atoms and bonds in a molecule

Example output:

TITLE: Ethanol.mopout
FORMULA: C2H6O
MASS: 46.0684
ATOM: 1 C TYPE: C3 HYB: 3 CHARGE: -0.2151
ATOM: 2 C TYPE: C3 HYB: 3 CHARGE: -0.0192
ATOM: 3 O TYPE: O3 HYB: 3 CHARGE: -0.3295
ATOM: 4 H TYPE: HC HYB: 0 CHARGE: 0.0771
ATOM: 5 H TYPE: HC HYB: 0 CHARGE: 0.0873
ATOM: 6 H TYPE: HC HYB: 0 CHARGE: 0.0874
ATOM: 7 H TYPE: HC HYB: 0 CHARGE: 0.0577
ATOM: 8 H TYPE: HC HYB: 0 CHARGE: 0.0577
ATOM: 9 H TYPE: HC HYB: 0 CHARGE: 0.1966
BOND: 0 START: 8 END: 2 ORDER: 1

118 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

BOND: 1 START: 6 END: 1 ORDER: 1
BOND: 2 START: 1 END: 2 ORDER: 1
BOND: 3 START: 1 END: 4 ORDER: 1
BOND: 4 START: 1 END: 5 ORDER: 1
BOND: 5 START: 2 END: 3 ORDER: 1
BOND: 6 START: 2 END: 7 ORDER: 1
BOND: 7 START: 3 END: 9 ORDER: 1

See Also:

Open Babel report format (report)

Note: This is a write-only format.

12.2.10 Open Babel report format (report)

A detailed report on the geometry of a molecule

The report format presents a report of various molecular information, including:

• Filename / molecule title

• Molecular formula

• Mass

• Exact mass (i.e., for high-resolution mass spectrometry, the mass of the most abundant elements)

• Total charge (if not electrically neutral)

• Total spin (if not singlet)

• Interatomic distances

• Atomic charges

• Bond angles

• Dihedral angles

• Chirality information (including which atoms are chiral)

• Additional comments in the input file

Example for benzene:

FILENAME: benzene.report
FORMULA: C6H6
MASS: 78.1118
EXACT MASS: 78.0469502
INTERATOMIC DISTANCES

C 1 C 2 C 3 C 4 C 5 C 6
--

C 1 0.0000
C 2 1.3958 0.0000
C 3 2.4176 1.3958 0.0000
C 4 2.7916 2.4176 1.3958 0.0000
C 5 2.4176 2.7916 2.4176 1.3958 0.0000
C 6 1.3958 2.4176 2.7916 2.4176 1.3958 0.0000
H 7 1.0846 2.1537 3.4003 3.8761 3.4003 2.1537

12.2. Utility formats 119

Open Babel Documentation, Release 2.3.1

H 8 2.1537 1.0846 2.1537 3.4003 3.8761 3.4003
H 9 3.4003 2.1537 1.0846 2.1537 3.4003 3.8761
H 10 3.8761 3.4003 2.1537 1.0846 2.1537 3.4003
H 11 3.4003 3.8761 3.4003 2.1537 1.0846 2.1537
H 12 2.1537 3.4003 3.8761 3.4003 2.1537 1.0846

H 7 H 8 H 9 H 10 H 11 H 12
--

H 7 0.0000
H 8 2.4803 0.0000
H 9 4.2961 2.4804 0.0000
H 10 4.9607 4.2961 2.4803 0.0000
H 11 4.2961 4.9607 4.2961 2.4803 0.0000
H 12 2.4803 4.2961 4.9607 4.2961 2.4804 0.0000

ATOMIC CHARGES
C 1 -0.1000000000
C 2 -0.1000000000
C 3 -0.1000000000
C 4 -0.1000000000
C 5 -0.1000000000
C 6 -0.1000000000
H 7 0.1000000000
H 8 0.1000000000
H 9 0.1000000000
H 10 0.1000000000
H 11 0.1000000000
H 12 0.1000000000

BOND ANGLES
7 1 2 HC Car Car 120.000
1 2 3 Car Car Car 120.000
1 2 8 Car Car HC 120.000
8 2 3 HC Car Car 120.000
2 3 4 Car Car Car 120.000
2 3 9 Car Car HC 120.000
9 3 4 HC Car Car 120.000
3 4 5 Car Car Car 120.000
3 4 10 Car Car HC 120.000
10 4 5 HC Car Car 120.000
4 5 6 Car Car Car 120.000
4 5 11 Car Car HC 120.000
11 5 6 HC Car Car 120.000
5 6 1 Car Car Car 120.000
5 6 12 Car Car HC 120.000
12 6 1 HC Car Car 120.000
6 1 2 Car Car Car 120.000
6 1 7 Car Car HC 120.000
2 1 7 Car Car HC 120.000
3 2 8 Car Car HC 120.000
4 3 9 Car Car HC 120.000
5 4 10 Car Car HC 120.000
6 5 11 Car Car HC 120.000
1 6 12 Car Car HC 120.000

TORSION ANGLES
6 1 2 3 0.026
6 1 2 8 -179.974

120 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

7 1 2 3 179.974
7 1 2 8 -0.026
1 2 3 4 -0.026
1 2 3 9 -179.974
8 2 3 4 179.974
8 2 3 9 0.026
2 3 4 5 0.026
2 3 4 10 179.974
9 3 4 5 179.974
9 3 4 10 -0.026
3 4 5 6 -0.026
3 4 5 11 179.974
10 4 5 6 -179.974
10 4 5 11 0.026
4 5 6 1 0.026
4 5 6 12 179.974
11 5 6 1 -179.974
11 5 6 12 -0.026
5 6 1 2 -0.026
5 6 1 7 -179.974
12 6 1 2 179.974
12 6 1 7 0.026

See Also:

Open Babel molecule report (molreport)

Note: This is a write-only format.

12.2.11 Outputs nothing (nul)

Note: This is a write-only format.

12.2.12 Read and write raw text (text)

Facilitates the input of boilerplate text with babel commandline

12.2.13 Title format (txt)

Displays and reads molecule titles

12.2.14 XYZ cartesian coordinates format (xyz)

A generic coordinate format

The “XYZ” chemical file format is widely supported by many programs, although no formal specification has been
published. Consequently, Open Babel attempts to be extremely flexible in parsing XYZ format files. Similar formats
include Tinker XYZ and UniChem XYZ which differ slightly in the format of the files. (Notably, UniChem XYZ uses
the atomic number rather than element symbol for the first column.)

• Line one of the file contains the number of atoms in the file.

12.2. Utility formats 121

Open Babel Documentation, Release 2.3.1

• Line two of the file contains a title, comment, or filename.

Any remaining lines are parsed for atom information. Lines start with the element symbol, followed by X, Y, and Z
coordinates in angstroms separated by whitespace.

Multiple molecules / frames can be contained within one file.

On output, the first line written is the number of atoms in the molecule (warning - the number of digits is limited to
three for some programs, e.g. Maestro). Line two is the title of the molecule or the filename if no title is defined. Re-
maining lines define the atoms in the file. The first column is the atomic symbol (right-aligned on the third character),
followed by the XYZ coordinates in “10.5” format, in angstroms. This means that all coordinates are printed with five
decimal places.

Example:

12
benzene example
C 0.00000 1.40272 0.00000
H 0.00000 2.49029 0.00000
C -1.21479 0.70136 0.00000
H -2.15666 1.24515 0.00000
C -1.21479 -0.70136 0.00000
H -2.15666 -1.24515 0.00000
C 0.00000 -1.40272 0.00000
H 0.00000 -2.49029 0.00000
C 1.21479 -0.70136 0.00000
H 2.15666 -1.24515 0.00000
C 1.21479 0.70136 0.00000
H 2.15666 1.24515 0.00000

Read Options

s Output single bonds only

b Disable bonding entirely

12.3 Other cheminformatics formats

12.3.1 Accelrys/MSI Biosym/Insight II CAR format (arc, car)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.3.2 Accelrys/MSI Cerius II MSI format (msi)

Note: This is a read-only format.

122 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.3.3 Accelrys/MSI Quanta CSR format (csr)

Note: This is a write-only format.

12.3.4 MCDL format (mcdl)

Modular Chemical Descriptor Language

As described in [gb2001].

Here’s an example conversion from SMILES to MCDL:

obabel -:"CC(=O)Cl" -omcdl
CHHH;COCl[2]

12.3.5 MSI BGF format (bgf)

12.3.6 PubChem format (pc)

An XML format containing information on PubChem entries.

PubChem is a freely-available database of chemical compounds and their properties.

OpenBabel only extracts the chemical structure information, and the potentially large amount of other information is
currently ignored. The format seems to handle multiple conformers, but only one is read (this needs testing).

Note: This is a read-only format.

12.4 Computational chemistry formats

12.4.1 ABINIT Output Format (abinit)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.2 ADF cartesian input format (adf)

Note: This is a write-only format.

12.4. Computational chemistry formats 123

http://pubchem.ncbi.nlm.nih.gov/

Open Babel Documentation, Release 2.3.1

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.3 ADF output format (adfout)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.4 CAChe MolStruct format (cache, cac)

Note: This is a write-only format.

12.4.5 CASTEP format (castep)

The format used by CASTEP.

Note: This is a read-only format.

12.4.6 Cacao Cartesian format (caccrt)

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.7 Cacao Internal format (cacint)

Note: This is a write-only format.

124 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.4.8 DMol3 coordinates format (outmol, dmol)

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.9 FHIaims XYZ format (fhiaims)

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.10 Fenske-Hall Z-Matrix format (fh)

Note: This is a write-only format.

12.4.11 GAMESS Input (inp, gamin)

Write Options

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

12.4.12 GAMESS Output (gamout, gam, gamess)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

c Read multiple conformers

12.4.13 GAMESS-UK Input (gukin)

12.4.14 GAMESS-UK Output (gukout)

12.4.15 GULP format (got)

The format used by GULP (General Utility Lattice Program).

12.4. Computational chemistry formats 125

Open Babel Documentation, Release 2.3.1

Note: This is a read-only format.

12.4.16 Gaussian 98/03 Input (gjf, gjc, gau, com)

Note: This is a write-only format.

Write Options

b Output includes bonds

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

u Write the crystallographic unit cell, if present.

12.4.17 Gaussian Output (g09, g03, g94, g92, g98, gal)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.18 Gaussian Z-Matrix Input (gzmat)

Read Options

s Output single bonds only

b Disable bonding entirely

Write Options

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

126 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.4.19 Gaussian formatted checkpoint file format (fchk, fch, fck)

A formatted text file containing the results of a Gaussian calculation

Currently supports reading molecular geometries from fchk files. More to come.

Note: This is a read-only format.

Read Options

s Single bonds only

b No bond perception

12.4.20 HyperChem HIN format (hin)

12.4.21 Jaguar input format (jin)

Note: This is a write-only format.

12.4.22 Jaguar output format (jout)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.23 MOPAC Cartesian format (mopcrt, mpc, mop)

Read Options

s Output single bonds only

b Disable bonding entirely

Write Options

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

u Write the crystallographic unit cell, if present.

12.4. Computational chemistry formats 127

Open Babel Documentation, Release 2.3.1

12.4.24 MOPAC Internal (mopin)

Write Options

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

12.4.25 MOPAC Output format (moo, mopout)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.26 MPQC output format (mpqc)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.27 MPQC simplified input format (mpqcin)

Note: This is a write-only format.

12.4.28 Molpro input format (mp)

Note: This is a write-only format.

12.4.29 Molpro output format (mpo)

Note: This is a read-only format.

128 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.30 NWChem input format (nw)

Note: This is a write-only format.

12.4.31 NWChem output format (nwo)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.32 PWscf format (pwscf)

The format used by PWscf, part of Quantum Espresso.

Note: This is a read-only format.

12.4.33 Parallel Quantum Solutions format (pqs)

12.4.34 Q-Chem input format (qcin)

Note: This is a write-only format.

Write Options

k <keywords> Use the specified keywords for input

f <file> Read the file specified for input keywords

12.4.35 Q-Chem output format (qcout)

Note: This is a read-only format.

12.4. Computational chemistry formats 129

Open Babel Documentation, Release 2.3.1

Read Options

s Output single bonds only

b Disable bonding entirely

12.4.36 TurboMole Coordinate format (tmol)

Read Options

s Output single bonds only

b Disable bonding entirely

a Input in Angstroms

Write Options

a Output Angstroms

12.4.37 VASP format (CONTCAR, POSCAR)

Reads in data from POSCAR and CONTCAR to obtain information from VASP calculations.

Due to limitations in Open Babel’s file handling, reading in VASP files can be a bit tricky; the client that is using Open
Babel must use OBConversion::ReadFile() to begin the conversion. This change is usually trivial. Also, the complete
path to the CONTCAR file must be provided, otherwise the other files needed will not be found.

Note: This is a read-only format.

12.4.38 ZINDO input format (zin)

The input format for the semiempirical quantum-mechanics program ZINDO.

Note: This is a write-only format.

Write Options

c Write an input file for the CNDO/INDO program.

12.5 Crystallography formats

12.5.1 ACR format (acr)

CaRIne ASCII Crystal format (ACR)

Note: This is a read-only format.

130 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Read Options

s Consider single bonds only

12.5.2 CSD CSSR format (cssr)

Note: This is a write-only format.

12.5.3 Crystallographic Information File (cif)

The CIF file format is the standard interchange format for small-molecule crystal structures

Fractional coordinates are converted to cartesian ones using the following convention:

• The x axis is parallel to a

• The y axis is in the (a,b) plane

• The z axis is along c*

Ref: Int. Tables for Crystallography (2006), vol. B, sec 3.3.1.1.1 (the matrix used is the 2nd form listed)

Read Options

v Verbose CIF conversion

s Output single bonds only

b Disable bonding entirely

B Use bonds listed in CIF file from _geom_bond_etc records (overrides option b)

12.5.4 Free Form Fractional format (fract)

General purpose crystallographic format

The “free-form” fractional format attempts to allow for input from a range of fractional / crystallography file formats.
As such, it has only a few restrictions on input:

• Line one of the file contains a title or comment.

• Line two of the file contains the unit cell parameters separated by whitespace and/or commas (i.e. “a b c alpha
beta gamma”).

• Any remaining lines are parsed for atom information. Lines start with the element symbol, followed by fractional
X, Y, and Z coordinates (in angstroms) separated by whitespace.

Any numeric input (i.e., unit cell parameters, XYZ coordinates) can include designations of errors, although this is
currently ignored. For example:

C 1.00067(3) 2.75(2) 3.0678(12)

will be parsed as:

C 1.00067 2.75 3.0678

12.5. Crystallography formats 131

Open Babel Documentation, Release 2.3.1

When used as an output format, The first line written is the title of the molecule or the filename if no title is defined.
If a molecule has a defined unit cell, then the second line will be formatted as:

a b c alpha beta gamma

where a, b, c are the unit cell vector lengths, and alpha, beta, and gamma are the angles between them. These numbers
are formatted as “10.5”, which means that 5 decimal places will be output for all numbers. In the case where no unit
cell is defined for the molecule, the vector lengths will be defined as 1.0, and the angles to 90.0 degrees.

Remaining lines define the atoms in the file. The first column is the atomic symbol, followed by the XYZ coordinates
in 10.5 format (in angstroms).

Here is an example file:

ZnO test file
3.14 3.24 5.18 90.0 90.0 120.0
O 0.66667 0.33333 0.3750
O 0.33333 0.66667 0.8750
Zn 0.66667 0.33333 0.0000
Zn 0.33333 0.66667 0.5000

Read Options

s Output single bonds only

b Disable bonding entirely

12.5.5 Macromolecular Crystallographic Info (mmcif, mcif)

Read Options

s Output single bonds only

b Disable bonding entirely

12.5.6 ShelX format (ins, res)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.6 Reaction formats

12.6.1 CML Reaction format (cmlr)

A minimal implementation of the CML Reaction format

This implementation uses libxml2.

132 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Write Options

1 output CML1 (rather than CML2)

a output array format for atoms and bonds

l molecules NOT in MoleculeList

h use hydrogenCount for all hydrogens

x omit XML declaration

r omit rate constant data

N <prefix> add namespace prefix to elements

M add obr prefix on non-CMLReact elements

p add properties to molecules

Comments

The implementation of this format which reads and writes to and from OBReaction objects is fairly minimal at present.
(Currently the only other reaction format in OpenBabel is RXN.) During reading, only the elements <reaction>, <re-
actant>, <product> and <molecule> are acted upon (the last through CML). The molecules can be collected together
in a list at the start of the file and referenced in the reactant and product via e.g. <molecule ref=”mol1”>.

On writing, the list format can be specified with the -xl option. The list containers are <moleculeList> and <reaction-
List> and the overall wrapper is <mechanism>. These are non-standard CMLReact element names and would have to
be changed (in the code) to <list>,<list> and <cml> if this was unacceptable.

12.6.2 MDL RXN format (rxn)

The MDL reaction format is used to store information on chemical reactions.

Output Options, e.g. -xA A output in Alias form, e.g. Ph, if present

12.6.3 Reaction SMILES format (rsmi)

Write Options

r radicals lower case eg ethyl is Cc

12.7 Image formats

12.7.1 PNG 2D depiction (png)

2D depiction of a single molecule, or add/extract a chemical structure from a .png file

The PNG format has several uses. The most common is to generate a .png file for a single structure (which may
contain several disconnected components). 2D coordinates are generated if not present:

obabel mymol.smi -O image.png

Chemical structure data can be embedded in the .png file (in a tEXt chunk):

12.7. Image formats 133

Open Babel Documentation, Release 2.3.1

obabel mymol.mol -O image.png -xO molfile

The parameter of the -xO option specifies the format (“file”can be added). Note that if you intend to embed a 2D or
3D format, you may have to call --gen2d or --gen3d to generate the required coordinates if they are not present
in the input.

Molecules can also be embedded in an existing PNG file:

obabel existing.png mymol1.smi mymol2.mol -O augmented.png -xO mol

Reading from a PNG file will extract any embedded chemical structure data:

obabel augmented.png -O contents.sdf

Read Options

y <additional chunk ID> Look also in chunks with specified ID

Write Options

p <pixels> image size, default 300

O <format ID> Format of embedded text

For example, molfile or smi.

y <additional chunk ID> Write to a chunk with specified ID

12.7.2 PNG2 format (png2)

2D depiction of a single molecule as a .png file

The PNG2 format is used ‘behind the scenes’ by the PNG format if generating image files, and the best way to use
it is actually through the PNG format. While it possible to generate a .png file directly using the PNG2 format as
follows...:

obabel -:"CC(=O)Cl" -opng2 -O mymol.png

...it is much better to generate it using the PNG format as this allows you to embed a chemical structure in the .png
file header which you can later extract:

$ obabel -:"CC(=O)Cl" -O mymol.png -xO smi
$ obabel mymol.png -osmi
CC(=O)Cl

The PNG2 format uses the Cairo library to generate the .png files. If Cairo was not found when Open Babel was
compiled, then this format will be unavailable. However, it will still be possible to use the PNG format to read .png
files if they contain embedded information.

See Also:

PNG 2D depiction (png)

Note: This is a write-only format.

134 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Write Options

p <pixels> image size, default 300

12.7.3 POV-Ray input format (pov)

Generate an input file for the open source POV-Ray ray tracer.

The POV-Ray file generated by Open Babel should be considered a starting point for the user to create a rendered
image of a molecule. Although care is taken to center the camera on the molecule, the user will probably want to
adjust the viewpoint, change the lighting, textures, etc.

The file babel_povray3.inc is required to render the povray file generated by Open Babel. This file is included
in the Open Babel distribution, and it should be copied into the same directory as the .pov file before rendering. By
editing the settings in babel_povray3.inc it is possible to tune the appearance of the molecule.

For example, the image below was generated by rendering the output from the following command after setting the
reflection of non-metal atoms to 0 (line 121 in babel_povray3.inc):

obabel -:"CC(=O)Cl acid chloride" --gen3d -O chloride.pov -xc -xf -xs -m SPF

Note: This is a write-only format.

12.7. Image formats 135

Open Babel Documentation, Release 2.3.1

Write Options

c Add a black and white checkerboard

f Add a mirror sphere

m <model-type> BAS (ball-and-stick), SPF (space-fill) or CST (capped sticks)

The default option is ball-and-stick. To choose space-fill, you would use the
following command line:

obabel aspirin.mol -O aspirin.pov -xm SPF

s Add a sky (with clouds)

t Use transparent textures

12.7.4 SVG 2D depiction (svg)

Scalable Vector Graphics 2D rendering of molecular structure.

When called from commandline or GUI or otherwise via Convert(), single molecules are displayed at a fixed scale,
as in normal diagrams, but multiple molecules are displayed in a table which expands to fill the containing element,
such as a browser window. When WriteMolecule() is called directly, without going through WriteChemObject, e.g.
via OBConversion::Write(), a fixed size image by default 200 x 200px containing a single molecule is written. The
size can be specified by the P output option.

Multiple molecules are displayed in a grid of dimensions specified by the -xr and -xc options (number of rows and
columns respectively and --rows, --cols with babel). When displayed in an appropriate program, e.g. Firefox,
there is javascript support for zooming (with the mouse wheel) and panning (by dragging with the left mouse button).

If both -xr and -xc are specified, they define the maximum number of molecules that are displayed. If only one of
them is displayed, then the other is calculated so that ALL the molecules are displayed. If neither are specified, all the
molecules are output in an approximately square table.

By default, 2D atom coordinates are generated (using gen2D) unless they are already present. This can be slow with
a large number of molecules. (3D coordinates are ignored.) Include --gen2D explicitly if you wish any existing 2D
coordinates to be recalculated.

Note: This is a write-only format.

Write Options

u no element-specific atom coloring

Use this option to produce a black and white diagram

U do not use internally-specified color

e.g. atom color read from cml or generated by internal code

b black background

The default is white. The atom colors work with both.

C do not draw terminal C (and attached H) explicitly

The default is to draw all hetero atoms and terminal C explicitly, together with
their attched hydrogens.

136 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

a draw all carbon atoms

So propane would display as H3C-CH2-CH3

d do not display molecule name

s use asymmetric double bonds

t use thicker lines

e embed molecule as CML

OpenBabel can read the resulting svg file as a cml file.

p <num> px Scale to bond length(single mol only)

P <num> px Single mol in defined size image

The General option –px # is an alternative to the above.

c <num> number of columns in table

c ols<num> number of columns in table(not displayed in GUI)

r <num> number of rows in table

r ows<num> number of rows in table(not displayed in GUI)

N <num> max number objects to be output

l draw grid lines

i add index to each atom

These indices are those in sd or mol files and correspond to the order of atoms in
a SMILES string.

j do not embed javascript

Javascript is not usually embedded if there is only one molecule, but it is if the
rows and columns have been specified as 1: -xr1 -xc1

x omit XML declaration (not displayed in GUI)

Useful if the output is to be embedded in another xml file.

A display aliases, if present

This applies to structures which have an alternative, usually shorter, representa-
tion already present. This might have been input from an A or S superatom entry
in an sd or mol file, or can be generated using the –genalias option. For example:

obabel -:"c1cc(C=O)ccc1C(=O)O" -O out.svg
--genalias -xA

would add a aliases COOH and CHO to represent the carboxyl and aldehyde
groups and would display them as such in the svg diagram. The aliases which are
recognized are in data/superatom.txt, which can be edited.

Comments

If the input molecule(s) contain explicit hydrogen, you could consider improving the appearance of the diagram by
adding an option -d to make it implicit. Hydrogen on hetero atoms and on explicitly drawn C is always shown. For
example, if input.smi had 10 molecules:

12.7. Image formats 137

Open Babel Documentation, Release 2.3.1

obabel input.smi -O out.svg -xb -xC -xe

would produce a svg file with a black background, with no explict terminal carbon, and with an embedded cml
representation of each molecule. The structures would be in two rows of four and one row of two.

12.8 2D drawing formats

12.8.1 ChemDraw CDXML format (cdxml)

Minimal support of chemical structure information only.

12.8.2 ChemDraw Connection Table format (ct)

12.8.3 ChemDraw binary format (cdx)

Read only.

Note: This is a read-only format.

12.8.4 Chemical Resource Kit diagram(2D) (crk2d)

12.8.5 Chemtool format (cht)

Note: This is a write-only format.

12.9 3D viewer formats

12.9.1 Ball and Stick format (bs)

12.9.2 Chem3D Cartesian 1 format (c3d1)

12.9.3 Chem3D Cartesian 2 format (c3d2)

12.9.4 Chemical Resource Kit 3D format (crk3d)

12.9.5 Ghemical format (gpr)

Open source molecular modelling

138 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.9.6 Molden format (molden, mold, molf)

Read Options

b no bonds

s no multiple bonds

12.9.7 PCModel Format (pcm)

12.9.8 UniChem XYZ format (unixyz)

Read Options

s Output single bonds only

b Disable bonding entirely

12.9.9 ViewMol format (vmol)

Read Options

s Output single bonds only

b Disable bonding entirely

12.9.10 XCrySDen Structure Format (axsf, xsf)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.9.11 YASARA.org YOB format (yob)

The native YASARA format.

12.10 Kinetics and Thermodynamics formats

12.10.1 ChemKin format (ck)

Read Options

f <file> File with standard thermo data: default therm.dat

12.10. Kinetics and Thermodynamics formats 139

Open Babel Documentation, Release 2.3.1

z Use standard thermo only

L Reactions have labels (Usually optional)

Write Options

s Simple output: reactions only

t Do not include species thermo data

0 Omit reactions with zero rates

12.10.2 Thermo format (tdd, therm)

Reads and writes old-style NASA polynomials in original fixed format

Read Options

e Terminate on “END”

12.11 Molecular dynamics and docking formats

12.11.1 Amber Prep format (prep)

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.11.2 AutoDock PDQBT format (pdbqt)

Reads and writes AutoDock PDBQT (Protein Data Bank, Partial Charge (Q), & Atom Type (T)) format

Note that the torsion tree is by default. Use the r write option to prevent this.

Read Options

b Disable automatic bonding

d Input file is in dlg (AutoDock docking log) format

140 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

Write Options

b Enable automatic bonding

r Output as a rigid molecule (i.e. no branches or torsion tree)

c Combine separate molecular pieces of input into a single rigid molecule (requires
“r” option or will have no effect)

s Output as a flexible residue

p Preserve atom indices from input file (default is to renumber atoms sequentially)

12.11.3 DL-POLY CONFIG (CONFIG)

12.11.4 DL-POLY HISTORY (HISTORY)

Note: This is a read-only format.

12.11.5 Dock 3.5 Box format (box)

12.11.6 GRO format (gro)

This is GRO file format as used in Gromacs.

Right now there is only limited support for element perception. It works for elements with one letter symbols if the
atomtype starts with the same letter.

Read Options

s Consider single bonds only

b Disable bonding entierly

12.11.7 GROMOS96 format (gr96)

Note: This is a write-only format.

Write Options

n output nm (not Angstroms)

12.11.8 MacroModel format (mmod, mmd)

12.11.9 Tinker XYZ format (txyz)

The cartesian XYZ file format used by the molecular mechanics package TINKER.

By default, the MM2 atom types are used for writiting files.

12.11. Molecular dynamics and docking formats 141

Open Babel Documentation, Release 2.3.1

Read Options

s Output single bonds only

Write Options

m Write an input file for the CNDO/INDO program.

3 Write atom types for the MM3 forcefield.

12.11.10 XTC format (xtc)

A portable format for trajectories (gromacs)

Note: This is a read-only format.

12.12 Volume data formats

12.12.1 ADF TAPE41 format (t41)

Currently the ADF Tape41 support reads grids from TAPE41 text files. To generate an ASCII version from the default
binary, use the dmpkf program.

Note: This is a read-only format.

Read Options

s Output single bonds only

b Disable bonding entirely

12.12.2 Gaussian cube format (cube, cub)

A grid format for volume data used by Gaussian

Open Babel supports reading and writing Gaussian cubes, including multiple grids in one file.

Read Options

b no bonds

s no multiple bonds

12.12.3 OpenDX cube format for APBS (dx)

A volume data format for IBM’s Open Source visualization software

The OpenDX support is currently designed to read the OpenDX cube files from APBS.

142 Chapter 12. Supported File Formats and Options

Open Babel Documentation, Release 2.3.1

12.13 Miscellaneous formats

12.13.1 M.F. Sanner’s MSMS input format (msms)

Generates input to the MSMS (Michael Sanner Molecular Surface) program to compute solvent surfaces.

Note: This is a write-only format.

Write Options

a output atom names

12.14 Biological data formats

12.14.1 FASTA format (fasta, fa, fsa)

A file format used to exchange information between genetic sequence databases

Read Options

1 Output single-stranded DNA

t <turns> Use the specified number of base pairs per turn (e.g., 10)

s Output single bonds only

b Disable bonding entirely

Write Options

n Omit title and comments

12.14.2 PQR format (pqr)

Read Options

s Output single bonds only

b Disable bonding entirely

12.15 Obscure formats

12.15.1 Alchemy format (alc)

12.15.2 CCC format (ccc)

12.13. Miscellaneous formats 143

Open Babel Documentation, Release 2.3.1

Note: This is a read-only format.

12.15.3 Feature format (feat)

Read Options

s Output single bonds only

b Disable bonding entirely

12.15.4 SMILES FIX format (fix)

Note: This is a write-only format.

12.15.5 XED format (xed)

Note: This is a write-only format.

144 Chapter 12. Supported File Formats and Options

Bibliography

[obj2011] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, Geoffrey R. Hutchi-
son Open Babel: An open chemical toolbox. J. Cheminf. 2011, 3, 33. [Li]

[bll2002] P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, C. Van Alsenoy, and J. P. Tollenaere.
The Electronegativity Equalization Method II: Applicability of Different Atomic Charge Schemes. J. Phys.
Chem. A 2002, 106, 7895-7901. [Link]

[blc2003] Patrick Bultinck, Wilfried Langenaeker, Ramon Carbó-Dorca, and Jan P. Tollenaere. Fast Calculation of
Quantum Chemical Molecular Descriptors from the Electronegativity Equalization Method. J. Chem. Inf.
Comput. Sci. 2003, 43, 422-428. [Link]

[omh2008] N.M. O’Boyle, C. Morley and G.R. Hutchison. Pybel: a Python wrapper for the OpenBabel chemin-
formatics toolkit. Chem. Cent. J. 2008, 2, 5. [Link]

[bmg2004] Andreas Bender, Hamse Y. Mussa, and Robert C. Glen. Molecular Similarity Searching Using Atom
Environments, Information-Based Feature Selection, and a Naive Bayesian Classifier. J. Chem. Inf. Comput.
Sci. 2004, 44, 170-178. [Link]

[fpbg99] Dmitrii Filimonov, Vladimir Poroikov, Yulia Borodina, and Tatyana Gloriozova. Chemical Similarity As-
sessment through Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descrip-
tors. J. Chem. Inf. Comput. Sci. 1999, 39, 666-670. [Link]

[gb2001] A.A. Gakh and M.N. Burnett. Modular Chemical Descriptor Language (MCDL): Composition, Con-
nectivity and Supplementary Modules. J. Chem. Inf. Comput. Sci., 2004, 41, 1491-1499. [Link]

145

http://dx.doi.org/10.1186/1758-2946-3-33
http://dx.doi.org/10.1021/jp020547v
http://dx.doi.org/10.1021/ci0255883
http://dx.doi.org/10.1186/1752-153X-2-5
http://dx.doi.org/10.1021/ci034207y
http://dx.doi.org/10.1021/ci980335o
http://dx.doi.org/10.1021/ci000108y

	Introduction
	Goals of the Open Babel project
	Frequently Asked Questions
	Thanks

	Install Open Babel
	Install a binary package
	Compiling Open Babel

	obabel and babel - Convert, Filter and Manipulate Chemical Data
	Synopsis
	Options
	Examples
	Differences between babel and obabel
	Format Options
	Append property values to the title
	Filtering molecules from a multimolecule file
	Substructure and similarity searching
	Sorting molecules
	Remove duplicate molecules
	Aliases for chemical groups

	The Open Babel GUI
	Basic operation
	Options
	Multiple input files
	Wildcards in filenames
	Local input
	Output file
	Graphical display
	Using a restricted set of formats
	Other features
	Example files

	Molecular fingerprints and similarity searching
	Fingerprint format
	Spectrophores™

	obabel vs Chemistry Toolkit Rosetta
	Heavy atom counts from an SD file
	Convert a SMILES string to canonical SMILES
	Report how many SD file records are within a certain molecular weight range
	Convert SMILES file to SD file
	Report the similarity between two structures
	Find the 10 nearest neighbors in a data set
	Depict a compound as an image
	Highlight a substructure in the depiction
	Align the depiction using a fixed substructure
	Perform a substructure search on an SDF file and report the number of false positives
	Calculate TPSA
	Working with SD tag data
	Unattempted tasks

	Write software using the Open Babel library
	The Open Babel API
	C++
	Python
	Java
	Perl
	CSharp and OBDotNet
	Ruby

	Cheminformatics 101
	Cheminformatics Basics
	Representing Molecules
	Substructure Searching with Indexes
	Molecular Similarity
	Chemical Registration Systems

	Radicals and SMILES extensions
	The need for radicals and implicit hydrogen to coexist
	How Open Babel does it
	In radicals either the hydrogen or the spin multiplicity can be implicit
	SMILES extensions for radicals

	Contributing to Open Babel
	Overview
	Developing Open Babel
	Documentation
	Testing the Code
	Software Archaeology

	Adding plugins
	How to add a new file format
	Adding new operations and options

	Supported File Formats and Options
	Common cheminformatics formats
	Utility formats
	Other cheminformatics formats
	Computational chemistry formats
	Crystallography formats
	Reaction formats
	Image formats
	2D drawing formats
	3D viewer formats
	Kinetics and Thermodynamics formats
	Molecular dynamics and docking formats
	Volume data formats
	Miscellaneous formats
	Biological data formats
	Obscure formats

	Bibliography

